
RECONFIGURABLE NETWORK-ON-CHIP (NoC) ARCHITECTURES FOR

EMBEDDED SYSTEMS

by

Salih Bayar

B.S., Electronics and Communication Engineering, Yıldız Technical University, 2003,

İstanbul, Turkey

M.S., Systems Engineering, Electronics and Information Technology, University of

Karlsruhe(TH), 2007, Karlsruhe, Germany

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

Graduate Program in Computer Engineering
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help in the development of Systematic Resampling Algorithm. Advices given by Coşkun
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ABSTRACT

RECONFIGURABLE NETWORK-ON-CHIP (NoC)

ARCHITECTURES FOR EMBEDDED SYSTEMS

Communication architectures such as Point-to-Point (P2P) and shared bus are

poorly scalable as the number of cores or the communication volume increase. Network-

on-Chip (NoC) has been proposed to reduce power consumption and has been widely

adopted by the System-on-Chip (SoC) community. Yet, NoCs occupy more area and

consume more power as the size of network increases. In this thesis, we propose a novel

dynamic reconfigurable P2P (DRP2P) communication architecture for reconfigurable

embedded systems, which is an alternative to the conventional NoC architectures. In

DRP2P, interconnects are reconfigured on-the-fly as new communication requests ar-

rive at the system. In embedded applications running on the multi-core systems, the

traffic flow is usually known. Hence, DRP2P is very suitable for embedded systems.

DRP2P is inspired from both P2P interconnects and NoC architecture. If the traf-

fic flow is known in advance, it works as fast as P2P while reconfiguration process is

done at the time of computation. Thus, next communication scenario can be estab-

lished before communication starts. Since the reconfigurable wiring area in DRP2P is

proportional to the network size, it is as scalable as NoC. In order to achieve reconfig-

uration efficiently, we developed three different dedicated self reconfiguration engines.

The latest version of these engines is exploited in DRP2P architecture. DRP2P gives

better results than conventional NoCs if the physical placement of cores on the embed-

ded system is done properly by utilizing mapping and routing algorithms. Hence, fast

and heuristic mapping and routing algorithms are also designed in the scope of this

thesis. Experimental evaluations have shown that DRP2P outperforms conventional

NoCs even in the worst case scenario as the amount of data in on-chip communication

increases.
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ÖZET

GÖMÜLÜ SİSTEMLER İÇİN YENİDEN

BETİMLENEBİLİR YONGA ÜSTÜ AĞ (YüA)

MİMARİLERİ

Noktadan noktaya (NN) ya da paylaşımlı veri yolu gibi haberleşme mimarileri,

çekirdek sayısı ve bu çekirdekler arasındaki iletişim hacmi arttıkça ölçeklenememektedir.

Güç tüketimini azaltmak için, Yonga-üstü-Ağ (YüA) mimarileri öne sürülmüş olup,

bu mimariler Yonga-üstü-Sistem topluluğu tarafından yaygın olarak kabul görmüştür.

Ancak ağ boyutu arttıkça, YüA mimarileri daha fazla alan kaplamakta ve daha çok

güç tüketmektedirler. Bu yüzden, bu tezde, geleneksel YüA mimarilerine alternatif

olarak, Dinamik Yeniden betimlenebilir Noktadan Noktaya (DYNN) mimariler sunul-

maktadır. DYNN’de sisteme yeni haberleşme istekleri geldiğinde, bağlantılar dinamik

olarak yeniden betimlenir. Çok çekirdekli sistemler üzerinde koşan Gömülü Sistem

(GS) uygulamalarında, trafik akışı genellikle önceden bilinmektedir. DYNN mimarisi

hem NN hem de YüA mimarilerinden esinlenerek tasarlanmıştır. Eğer trafik akışı

önceden bilinirse, yeniden betimleme (YB) işlemi hesaplama zamanında yapıldığından,

DYNN, NN kadar hızlı çalışır. Böylece, bir sonraki haberleşme senaryosu, haberleşme

başlamadan kurulabilir. DYNN’de YB alanı ağ boyutu ile doğru orantılı olduğundan

dolayı, DYNN, geleneksel YüA gibi ölçeklenebilmektedir. Etkin bir YB için, tez kap-

samında üç adet YB motoru tasarlanmıştır. Bu motorların en son sürümü DYNN’de

kullanılmış olup, hedef sistem tarafından desteklenen en yüksek hızda çalışabilmektedir.

Eğer GS üzerinde çekirdeklerin yerleşmesi etkin eşleme ve yönlendirme algoritmaları

kullanılarak yapılırsa, DYNN, geleneksel YüA’lardan daha iyi sonuçlar vermektedir.

Bu yüzden, tez kapsamında sezgisel eşleme ve yönlendirme algoritmaları tasarlanmıştır.

Deneysel sonuçlara göre, DYNN’nin yonga üstü haberleşmede verinin arttığı en kötü

durumda bile, geleneksel YüA’dan daha iyi çalıştığı gözlemlenmiştir.
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1. MOTIVATION

Today, most of the data intensive applications (e.g image, video, signal process-

ing) are running on embedded multi-core architectures. On a multi-core architecture,

there are several small cores which run mostly at lower frequencies. Increasing the

number of cores leads to an increase in the number of messages communicated between

them. This may end up with a reduced performance and increased energy consump-

tion. Hence, the overall performance of a multi-core system is being affected not only

by the computation load but also by the communications infrastructure.

(a) Block Diagram (b) Connectivity Graph

Figure 1.1. MPEG2 application [3].

In Figure 1.1 embedded MPEG2 application is given. Here, while rectangu-

lar shapes represent the components of this embedded application (see Figure 1.1a),

arrows between these components represent the communication interconnects of the

application. Similarly, Figure 1.1b shows the connectivity of the components of this

application.

There are, mainly, three on-chip communication architectures to connect the com-

ponents of this embedded application. Figure 1.2 shows these possible architectures.

Figure 1.2a can be the first choice, where each component is directly connected to each

other via dedicated wires. Such an approach is called Point-to-Point (P2P). The second

choice of on-chip communication architectures can be connection of these components

via shared bus (see Figure 1.2b). As an alternative way, components can be connected
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(a) Point-to-Point (b) Shared bus (c) NoC

Figure 1.2. Possible on-chip communication architectures for MPEG2 application [3].

through routers in a Network-on-Chip (NoC) architecture as given in Figure 1.2c.

Here, the fastest communication architecture is the P2P architecture (see Figure

1.2a) where components are directly connected. Although P2P is the fastest solution

among all these three communication architectures (see Figure 1.2), it turns out to be

a power- and area-hungry solution as the number of cores increases. In shared bus

communication architecture, component pairs communicate through a bus in different

time slots (see Figure 1.2b). Here, the scheduling is done through a Bus Control Unit

(BCU). Shared bus can be a good candidate if there are not too many connected

components or cores. Like P2P, as the number of cores and message requests between

these cores increase, shared bus approach becomes not scalable, as well [3].

In the last decade, the NoC has been proposed as an alternative to reduce power

consumption and has been widely adopted by the SoC community. The third choice

of on-chip communication architectures can be NoC architecture, where cores commu-

nicate through router elements (see Figure 1.2c). Although NoC architectures propose

generic solutions and they are scalable, there are various parameters which affect the

performance of NoC communication architecture directly or indirectly. Most important

ones are mapping and routing algorithms, network topology, switching method, router

architecture and link bandwidth. As the number of cores increase, routers become the

bottleneck of NoC architectures because of the congestion and contention delays. In

order to reduce negative impacts of routers, the first approach can be reduction the

number of routers in a given NoC architecture. Hence, recent NoC studies [12–18]
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try to suppress the drawbacks of routers used in both packet and circuit switched

networks. The best way to relieve traffic density of routers and links can be reduc-

tion of contention and congestion delays. The second choice can be applying effective

scheduling, mapping and routing processes to the NoC architectures. If the mapping

and routing processes are not carried out properly, then improving other parameters

will not improve the performance of NoC significantly. As a result of these, we firstly

developed efficient mapping and routing algorithms for various NoC architectures in

the scope of this thesis (see Chapters 9 and 10). By utilizing these efficient algorithms,

we also propose dynamically reconfigurable point-to-point (DRP2P) interconnects for

setting up direct connection between two communicating units before the communi-

cation starts [19]. In order to increase efficiency of DRP2P, we take the advantage of

mapping and routing algorithms, which are mainly developed for NoC architectures: if

the communicating nodes are located in an inefficient manner, the reconfiguration area

might be larger than as expected. Increase in the reconfigurable area causes an increase

in the reconfiguration time as well. Hence, a careful mapping strategy must be applied

to the DRP2P for a successful design. In a similar manner, routing of interconnects

must be carried out in a wise way such that interconnects do not exceed the boundaries

of the pre-selected reconfigurable area. As a result of this, a smart routing must be

applied to the DRP2P in order to keep the reconfigurable area as small as possible.

(a) Best Case Analysis (b) Worst Case Analysis

Figure 1.3. Computation, reconfiguration and communication periods in partially

DRP2P interconnects.

As an alternative to the general purpose NoC architectures, DRP2P is neither

point-to-point (P2P) nor Network-on-Chip (NoC); it stands between these two on-chip

communication architectures. It is as fast as P2P and as scalable as NoC. DRP2P

solves the scalability issue of P2P by setting up on-demand communication-specific

links between cores. So, the occupied area and the total power consumption of com-

munication architecture can be reduced significantly. Instead of using routers like in



4

NoC, we utilize partial reconfiguration ability of Field Programmable Gate Arrays

(FPGAs) for routing data packets. Furthermore, DRP2P can work on any type of

multi-core topologies. The only drawback in DRP2P is the reconfiguration latency.

This drawback can be minimized when the reconfiguration of the communication links

is achieved during the computation times of the cores as given in Figure 1.3a.

Figure 1.4. Pre-selected areas for partial reconfiguration.

In DRP2P, communication scenarios are downloaded to the FPGA one-by-one

during the computation time of the cores. It is critical to understand that reconfig-

uration time plays a major role in assigning tasks to the cores and determining the

number of communication scenarios: In Figure 1.3a, the communication architecture

is established during the computation. Hence, reconfiguration time is not noticeable

at all. This is the case, where DRP2P works as fast as P2P. However, in Figure 1.3b,

the computation time is too short to set up the communication channel. In this case,

the reconfiguration time introduces an overhead to the communication latency, hence

degrades the efficiency of the P2P. This phenomenon dictates design constraints on

self-reconfiguration engine:

• The reconfiguration engine must be dedicated and on-chip.

• It should be small to reduce area overhead.

• It should be as fast as possible so that the computing processors will not wait for

the establishment of the communication channels

• It should have an on-chip cache to access the reconfiguration bitstreams quickly.

Since on-chip memory is limited, the configuration bitstreams of communication

scenarios should be small in size so as to increase the number of bitstreams on-



5

chip.

Figure 1.5. Partial reconfiguration flow.

As DRP2P takes the advantage of reconfiguration of interconnections between

communicating nodes, the following paragraphs help in creating motivation to the

partial reconfiguration concept.

Partial reconfiguration is the ability to reconfigure preselected areas of an FPGA

anytime after its initial configuration while the design is operational (see Figure 1.4).

By taking advantage of partial reconfiguration, hardware can be shared between various

applications and upgraded remotely without rebooting and thus resource utilization can

be increased [20].

Partial reconfiguration is allowed if the initial configuration is already loaded

onto the target device. The partial reconfiguration flow is given in Figure 1.5. As it

is obvious from this flow, partial bitstreams can be loaded onto the device only when

they are required.
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Figure 1.6. Dynamic partial reconfiguration.

In Figure 1.6, dynamic parital reconfiguration concept is given. In most cases a

reconfigurable FPGA system consists of three main components: an external intelli-

gent agent, some external (non-)volatile memory and a Complex Programmable Logic

Device (CPLD). Such a reconfigurable FPGA system is described in detail in [10]. In

some cases, systems may not require a CPLD if the used intelligent agent has a suffi-

cient number of general purpose I/O (GPIO) pins. For these systems, the FPGA can

be (re)configured directly by the intelligent agent [10].

Figure 1.7. Dynamic partial self-reconfiguration.

As given in Figure 1.7, to be able to perform dynamic partial self-reconfiguration

on an FPGA-based system, there should be either an internal configuration access port
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or an equivalent port. Some FPGAs such as Spartan-3A(N), Virtex-II(Pro), Virtex-4,

Virtex-5 from Xilinx, which have ICAP on their hardware, support self-reconfiguration

without using an external intelligent agent. Hence, in the scope of this thesis, we

designed three different on-chip self-reconfiguration cores, PCAP, cPCAP and c2PCAP

so as to achieve the runtime reconfiguraton of DRP2P interconnects as fast as possible.

The latest and most efficient version of these reconfiguration engines, c2PCAP, is used

within the DRP2P study.
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2. THESIS OUTCOME

2.1. Key Contributions

(i) Design and development of self reconfiguration engines [8, 9, 19,21] : We propose

three different dedicated reconfiguration engines in order to control reconfigu-

ration flow for XILINX FPGAs. First version of these engines [8] has neither

internal configuration nor bitstream compression and decompression capabilities.

After noticing that configuration bitstreams can be compressed efficiently, bit-

stream compression and decompression properties are added to the previous en-

gine. This modified version is our second reconfiguration engine [9]. In the third

version of our reconfiguration engines [19], we added internal configuration capa-

bility at different configuration interface widths and a second level compression

which is based not only on compression of a single bitstream but also on inter-

bitstream similarities. All of these engines are very small in terms of hardware,

they are portable, they can read streams from both off-chip and on-chip memo-

ries. None of them sacrifices from the decompression time. All these engines are

dedicated for reconfiguration process and thus, they let the available processors

on the target device without being interrupted by the reconfiguration process.

(ii) An efficient and fast heuristic algorithm for NoC mapping problem [7] : As the

task to core mapping problem for NoCs is intractable, we propose a heuristic

approach to solve this problem. The proposed algorithm can run in parallel and

does not have a fixed time; algorithm’s running time depends on the number

of iterations given by the user. As the number of iterations of the algorithm

increases, it tends to give better results. For this mapping problem, we make use

of particle filters, systematic re-sampling and Dijkstra’s shortest path algorithms.

(iii) Particle Filtering based simultaneous mapping and routing algorithm for NoCs

[22] : Similar to the mapping problem for NoCs, the routing problem for NoCs is

also intractable and dependent on the mapping quality. Hence, we propose a new

heuristic algorithm, where we consider mapping and routing at the same time for

a given input task graph and a NoC architecture topology. In this routing scheme,
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we exploit particle filters, wave-front and Dijkstra’s shortest path algorithms.

(iv) Dynamically reconfigurable interconnects for multicore embedded systems [19] :

We propose a new communication architecture, which is neither point-to-point

nor NoC but takes advantage of both approaches by reconfiguring the communica-

tion interconnects between cores. DRP2P is inspired from both P2P interconnects

and NoC architecture. Since traffic flows between communicating nodes in most

of the embedded applications are known in advance (e.g. at design time), DRP2P

works as fast as P2P while reconfiguration is done at the time of computation.

Thus, next communication scenario can be established by reconfiguration before

communication starts. As a result, reconfiguration overhead can be minimized.

DRP2P is as scalable as NoC; increasing the number of nodes or interconnects

does not change the reconfiguration speed as long as they fit to pre-defined recon-

figurable area. Unless the reconfigurable area changes, the size of partial bistream

representing that area does not change. Thus, the corresponding reconfiguration

time, which is directly proportional to the size of that bitstream, does not affect

from the number of nodes or interconnects for a given embedded application.

2.2. Thesis Outline

Chapter 1 gives thesis motivation. In Chapter 2 key contributions are presented

to the readers and also a summary of the whole thesis is given. In the following four

chapters, we propose the reconfiguration engines, which are developed in the scope

of the thesis. In Chapter 3, we give a brief introduction about dynamic partial self-

reconfiguration on Xilinx FPGAs. Our first reconfiguration engine, named PCAP

(Parallel Configuration Access Port) is explained in Chapter 4 in detail. In Chap-

ter 5, the second reconfiguration engine, cPCAP (compressed Parallel Configuration

Access Port), which has compression and decompression capabilities of bitstream, is

examined widely. Chapter 6 gives the modified version of our cPCAP core (cPCAPv2)

and its capabilities. Next, our most efficient reconfiguration engine, c2PCAP (double

compressed Parallel Configuration Access Port) and compression techniques are ex-

plained in Chapter 7. Afterwards, in the following four chapters, we show mapping

and routing algorithms for NoC and our proposed solution DRP2P. In Chapter 8, we
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give details about the topic of adaptive on-chip communication architectures of recon-

figurable devices. The following chapter gives our developed mapping algorithm for

NoC architectures and various related experimental results. Chapter 10 presents rout-

ing algorithm for NoC architectures. Then, in Chapter 11, we propose our dynamically

reconfigurable interconnects solution. Later on, we present a conclusion describing the

work done through the thesis in Chapter 12. The future opportunities in the scope of

work given in the thesis is presented in Chapter 13. Finally, user manuals for recon-

figuration engines, DRP2P, PFMAP and PFROUT are given in Chapters A, B and C

respectively.
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3. DYNAMIC PARTIAL SELF-RECONFIGURATION

(DPSR) ON XILINX FPGAs

This chapter and the following three chapters present alternative approaches for

dynamic partial self-reconfiguration that enables a Field Programmable Gate Array

(FPGA) to reconfigure itself dynamically and partially through a parallel configuration

access port under the control of a reconfiguration engine within the FPGA instead of

using an embedded processor. The reconfiguration process is accomplished without an

internal configuration access port(ICAP), which should be used either with MicroBlaze

soft core or with PowerPC hard core using HWICAP core for the On-Chip Peripheral

Bus (OPB) [10]. The three stand alone cores need neither HWICAP core nor the OPB

interface.

The dynamic partial self-reconfiguration (DPSR) concept is the ability to change

the configuration of part of an FPGA device by itself while other processes continue

in the rest of the device. Normally FPGA devices can be reconfigured numerous times

at runtime via an external intelligent agent such as a microprocessor, microcontroller,

computer, or tester.

By exploiting the DPSR of an FPGA, a large design can fit into a smaller device.

Even though the power dissipation during reconfiguration cannot be neglected, the total

power consumption of the system can be decreased. It has already been shown that

the system power or energy can be decreased by exploiting DPSR capability of FPGAs

with using power reduction methods such as clock scaling, clock gating, reconfigurable

hardware deactivation and removal, etc. [23–26]. There have been different works to

achieve partial reconfiguration of Xilinx FPGAs. What seems to be disregarded thus

far is the ability of self-reconfiguration of low cost FPGAs and the ability of self-

reconfiguration on processor independent environments. So far, most of the works

related to self-reconfiguration on Xilinx FPGAs are implemented with a custom core

such as MicroBlaze, PowerPC, etc.
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A pure Spartan-3 FPGA, which doesn’t have any multiboot capabilities and

Internal Configuration Access Port (ICAP), cannot be reconfigured without any addi-

tional external hardware. However, some other FPGA series such as Spartan-3A(N),

Virtex-II(Pro), Virtex-4, Virtex-5 FPGA series have this ICAP module on their pre-

designed hardware architecture [10]. Although the Spartan-3 architecture is based on

the Virtex-II and Virtex-II Pro architectures, the pure Spartan-3 family does not sup-

port the ICAP interface. In spite of the lack of an ICAP module on its architecture,

dynamic reconfiguration is still supported in Spartan-3 via the external SelectMAP

interface or JTAG, but not through the ICAP interface. Spartan-3 FPGAs support

some of the dynamic partial reconfiguration capabilities, but with some limitations

compared to Virtex devices.

Up to now, the lack of ICAP module on pure Spartan-3 FPGAs makes the DPSR

impossible on these architectures without using any other additional external devices.

ICAP is a functional subset of external parallel SelectMAP mode and is accessible

internally via a user design. It allows the user design to control device reconfiguration

at run-time. It becomes available after initial configuration is complete. That’s why

a component should be developed for pure Spartan-3 FPGAs, which acts as an ICAP

and allows partial self-reconfiguration at run-time for Spartan-3 FPGA family. Partial

reconfiguration is only possible through either serial JTAG interface or parallel slave

SelectMAP mode. Since parallel slave SelectMAP interface has higher performance

than the serial JTAG interface, the SelectMAP port is used in this thesis. Parallel

SelectMAP port is used for either complete configuration or partial reconfiguration for

applications, where the performance is the most important consideration.

The first self reconfiguration core developed within the scope of this thesis is

PCAP (Parallel Configuration Access Port). The PCAP core needs only 324 slices,

which is approximately 16% of a Spartan-3S200 FPGA. The dynamic partial self-

reconfiguration via PCAP core works up to 50Mbyte/s. This approach has been im-

plemented on a pure Spartan-3 FPGA from Xilinx, but it can also be used for any

other FPGA architectures, such as Virtex-II(Pro), Virtex-4, Virtex-5, etc.
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The extended version of the PCAP core is cPCAP, which is the first version

of the self reconfiguration core operating on compressed bitstreams. Likewise PCAP,

cPCAP uses BlockRAMs to store partial configuration bitstreams. BlockRAMs pro-

vide on-chip fast memory in FPGAs. However, the number of BlockRAMs is limited.

Hence, cPCAP, maximizes the utilization of BlockRAMs by storing compressed partial

bitstreams at initial configuration time and decompressing them during self reconfig-

uration. Due to compressed partial bitstream, more on-chip storage can be saved.

Moreover, the reconfiguration clock speed of cPCAP is the same with that of PCAP

in spite of the integrated decompression module. Because of being written entirely in

VHDL, this cPCAP core is highly portable and can also be used for all other Xilinx

FPGA architectures. Thus it is not necessary to use an external intelligent agent to

control the partial reconfiguration flow. The cPCAP core with bitstream decompres-

sion module needs only 361 slices , which is approximately 18% of a Spartan-3S200

FPGA.

For Spartan-6 FPGAs, we have developed hard-macros and exploited the self-

reconfiguration engine, compressed Parallel Configuration Access Port (cPCAP) [9],

that we designed for Spartan-3. The modified cPCAP core with block RAM controller,

bitstream decompressor unit and Internal Configuration Access Port (ICAP) Finite

State Machine (FSM) occupies only about 82 of 6,822 slices (1.2% of whole device) on

a Spartan-XC6SLX45 FPGA and it achieves the maximum theoretical reconfiguration

speed of 200MB/s (ICAP, 16-bit at 100MHz) proposed by Xilinx.

The on-chip self-reconfiguration core cPCAP is improved further as c2PCAP to

maximize the utilization of on-chip memory further. This is achieved by applying joint

compression on all partial bitstreams that may appear in the embedded system. For

c2PCAP core the combination of zero-run length coding and XOR method is proposed.

Extreme compression ratios, like 99%, can be achieved when the similarities among

bitstreams increase. Details of proposed compression method used in c2PCAP core is

explained in Section 7.2. Since the proposed compression method is not complex, it

uses a very simple decompression module and as a result of this, the c2PCAP core is

extremely minimal. The decompression module of c2PCAP core is explained in Section
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7.4.

c2PCAP core is designed for Xilinx FPGAs and can partially reconfigure the

FPGA at the highest rate proposed by the manufacturer (up to 400MB/s for Virtex-

4, 100MHz ICAP 32-bit; up to 200MB/s for Spartan-6, 100MHz ICAP 16-bit; up to

75MB/s for Spartan-3, 75MHz SelectMAP 8-bit). Moreover it is the smallest engine

that is designed within this thesis: It occupies 208 slices for Virtex-4, 82 slices for

Spartan-6 [21], 261 slices for Spartan-3.

3.1. Related Works on Self-Reconfigurable Systems

The fact that the pure Spartan-3 does not have such an internal configuration

port, has rendered impossible the self-reconfiguration without using an external intel-

ligent agent up to now apart from a few new studies, which are discussed below.

In [27], a soft ICAP, known as JCAP, has been developed in order to realize the

self reconfiguration. As a reconfiguration interface they use serial JTAG interface which

is very slow compared to parallel SelectMAP port. Though the ICAP on Virtex-II or

Spartan3A devices have a reconfiguration speed 66MByte/s [10], JCAP only achieves

a reconfiguration rate of 2Mbits/s. The reason of this huge performance difference

between the ICAP and JCAP is the serial JTAG interface for JCAP.

Within the scope of the thesis, we have used parallel SelectMAP port instead

of serial JTAG interface, thus we have developed a self-reconfigurable system on pure

Spartan-3 series which should be at least 8 times faster than the developed system

in [27]. Since a serial configuration method is used in [27], they achieved to send one

bit per configuration clock cycle. However, our self reconfiguration cores use a parallel

configuration method, hence we send 8 bits at each configuration clock cycle.

In [28], a self-reconfiguration system on pure Spartan-3 has been developed. They

have solved the lack of ICAP on Spartan-3 FPGAs by adding an external loopback,

therefore they have used a GPIO core on MicroBlaze and 11 external wires to accom-
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plish the interface through SelectMAP port. In order to store initial configuration

bitstream and generate configuration clock signal they have also used a XCF config-

uration flash PROM. Under the control of GPIO core of MicroBlaze they reconfigure

the target FPGA through SelectMAP port. Though they have achieved a speed as

in ICAP, they have used an external PROM to store initial configuration bitstream,

MicroBlaze soft core to control the configuration flow and a TFTP server and onboard

SDRAM to store the partial bitstreams. Although we have also used 11 external wires

and the SelectMAP port as a reconfiguration interface, we have used BlockRAM to

store partial bitstream, cPCAP core to control the reconfiguration flow. Since they de-

signed a MicroBlaze-based system, they used 4198 slices of an Spartan-3S2000 FPGA.

Applying such a system to small FPGAs (e.g. to a Spartan-3S200) is impossible.

However, our cPCAP core is very small, which is 361 slices and only 18% of a Spartan-

3S200. Thus, we have accomplished a processor-independent run-time reconfigurable

system and presented a very new approach for storing compressed partial bitstreams

on BlockRAM within the FPGA.

Both [27] and [28] process uncompressed partial bitstreams that are stored in

external memory. However, cPCAP can process compressed partial bitstreams that

are stored in BlockRAMs. This has two main advantages: (i) A BlockRAM can hold

more compressed partial bitstreams than regular uncompressed partial bitstreams (ii)

Access time to a partial bitstream in a BlockRAM is much shorter than the access time

to a partial bitstream in an external memory. Decompression is realized in cPCAP

during reconfiguration time without sacrificing from reconfiguration speed.

In [29], the functionality of JCAP core is extended with the readback feature

for failure detection. Since readback is possible only through JTAG and SelectMAP

interface on Spartan-3 devices and their JCAP core works only with JTAG interface,

they prefer to use JTAG interface both for self-reconfiguration and readback processes.

Although it is a time consuming process, the readback method is most common method

for failure detection in configuration. The main drawback of this work is their slow

reconfiguration and readback speed. For the reconfiguration of a module with the size

387 KBytes, they need 1.58 s which is really too long for reconfiguration time. So
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their reconfiguration speed is 0.24 MB/s approximately. Apart from suffering from

speed, the JCAP core neither offers a processer-independent platform for partial self-

reconfiguration, nor does it apply partial bitstream compression.

In [30], an ICAP controller PLB ICAP, a rival to OPBHWICAP is proposed.

This PLB ICAP controller is applied to Virtex-II Pro and Virtex-4 FPGAs from XIL-

INX. Although the PLB ICAP controller attained higher reconfiguration throughput

(295.4MByte/s) than OPBHWICAP’s (5.07MByte/s), it can not still reach to maxi-

mum available throughput (400MByte/s) for Virtex-4 in 32-bit ICAP mode at 100MHz.

Like JCAP, the PLB ICAP controller doesn’t provide a processor-independency and

bitstream compression.

In [31], Ming Liu et al. proposed to use DMA, Master burst (MST) and a

dedicated Block RAM cache in order to reduce the reconfiguration time on a Virtex-4

FPGA. They made a comparison among different ICAP (32-bit, 100MHz) designs such

as opb hwicap, xps hwicap with their proposed architectures dma hwicap, mst hwicap

and bram hwicap. As a maximum reconfiguration speed among these approaches, they

have attained 371.4MB/s for bram hwicap.

In [32], Koch et al. have demonstrated partial reconfigurable systems on Spartan-

6 FPGAs. As the reconfiguration interface, they have used the ICAP with 16-bit Mode

at 100MHz. To control the reconfiguration flow, they have used a host PC and the

UART interface to access the ICAP. Since such a system does not reconfigure itself

without any external engine, it is not in the class of self-reconfigurable systems. To put

it clearly, a self reconfigurable system should have an internal agent/ processor/ FSM

which controls the configuration flow of the FPGA device. When the reconfiguration

process control engine is an external agent, then the whole system is not in the class of

self-reconfigurable system but in the reconfigurable system. They have also mentioned

maximum attainable reconfiguration speed (200MB/s) on Spartan-6 FPGAs, but not

about the reconfiguration speed in their own system.

In [33], a self-reconfigurable system on a Virtex-4 FPGA is proposed. The pre-
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ferred reconfiguration engine is the MicroBlaze soft core and the configuration interface

is ICAP. The authors did not mention about the ICAP interface bit width that they

have preferred in their study. Partial reconfiguration times that they obtained vary

from 108ms to 460ms while partial bitstream (PB) sizes are in the range of 58KB to

244KB. Therefore the reconfiguration speed is about 0.54MB/s.

In [34] Hübner et al. proposed a fast dynamic and partial reconfiguration data

path for Virtex-4 FPGAs. In their study, they have compared three different ICAP

approaches (FSL-ICAP, XPS-ICAP, and pure ICAP) on the soft-core MicroBlaze and

the hard core PowerPC. The maximum speed they have attained is 295.4MB/s with

ICAP (32-bit, 100MHz) on PowerPC. For the PB repository, they have chosen external

DDR2-SDRAM memory. This memory has different bus connections such as XCL bus

and PLB bus over MPMC controller to the MicroBlaze and PowerPC respectively. The

different speed values between these ICAP designs come from the bus type and the

way they connect the bus to the DDR2-SDRAM memory.

François et al. have presented a fast ICAP controller on a Virtex-5 FPGA in [35].

In their study, they have reached the ICAP upper bound throughput of 800MB/s by

overclocking the ICAP to 200MHz (32-bit mode). Actually there is no specific data-

sheet value for the ICAP maximum clock frequency, but it is clear that this value

should never exceed the maximum clock frequency for any external configuration port

(100MHz for serial/SelectMAP interface of Virtex-4 and Virtex-5 devices). Since ex-

ceeding this values may result in incorrect operation, we do not recommend overclocking

the ICAP module. In addition to this, they have compared to two different ICAP ap-

proaches, xps hwicap and xps hwicap with direct memory access (DMA) at 100MHz.

The maximum achieved ICAP bandwidth for two different approaches are 128MB/s

and 174MB/s respectively.

In the framework for run-time reconfiguration represented in [36], a Virtex-II

Pro FPGA XC2VP7 is reconfigured by using OPB-HWICAP under the control of

PowerPC. In this study, the average reconfiguration time per frame is 3028 µs. However,

copying the data to the BRAM into the configuration memory controller takes 2036 µs.
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Therefore, the time taken up by the ICAP to perform the actual partial reconfiguration

per frame is equal to 3028 µs-2036 µs = 992 µs. In XC2VP7, the frame length is 106 and

each consisting of 32-bit words [10]. In 992 µs, Silva and Ferreira reconfigure 424 Bytes

of configuration memory, therefore the reconfiguration speed is about 417KBytes/s.

A lot of studies related to dynamic partial reconfiguration property of reconfig-

urable architectures have been done in the literature. Especially, partial reconfiguration

of FPGAs has an important role in such design techniques. There have been different

works to utilize the partial reconfiguration ability of XILINX FPGAs [27–38]. We have

summarized the most of these studies in Table 3.1.

Table 3.1. A summary of some previous works on self-reconfigurable systems.

Study Control Partial Bitstream Interface Speed Target

Engine (PB) Repository Device

[27] MicroBlaze Off-Chip JTAG 2Mbits/s Spartan-3

[28] MicroBlaze Off-Chip SelectMAP 66MB/s Spartan-3

[29] MicroBlaze Off-Chip JTAG 0.24MB/s Spartan-3

[30] PLB ICAP Off-Chip ICAP 295.4MB/s Virtex-II Pro and

Virtex-4

[31] MicroBlaze Off-Chip dma hwicap 82.6MB/s Virtex-4

mst hwicap 253.2MB/s

bram hwicap 371.4MB/s

[32] host PC Off-Chip ICAP 200MB/s Spartan-6

UART interface

[33] MicroBlaze Off-Chip ICAP 0.54MB/s Virtex-4

[34] MicroBlaze Off-Chip ICAP 295.4MB/s Virtex-4

PowerPC FSL-ICAP

XPS-ICAP

[35] MicroBlaze Off-Chip overclocked ICAP 800MB/s Virtex-5

xps hwicap 128MB/s

xps hwicapwith DMA 174MB/s

[36] PowerPC Off-Chip ICAP 417KBytes/s Virtex-II Pro

Our Study c2PCAP On-Chip SelectMAP or 300MB/s All Xilinx

ICAP 400MB/s FPGAs

All above mentioned designs either suffer from speed or do not offer a processor-

independent self-reconfiguration platform for the low-cost state-of-the art FPGAs. In

addition to these, overclocking of ICAP module of an FPGA is not recommended by

the device vendor. To run safely, the speed limit of ICAP is 100MHz. Therefore, the

maximum throughput that can be achieved is 400MB/s (32-bit mode, not supported in

Spartan-6) theoretically. Since Spartan-6 supports reconfiguration through ICAP only
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in 16-bit interface, the maximum theoretical reconfiguration speed through ICAP at

100MHz is 200MB/s for these devices. In our case, we propose a processor-independent

self-reconfiguration platform for low-cost Spartan-6 FPGA with a safe throughput of

200MB/s (Spartan-XC6SLX45 ICAP, 16-bit mode, 100MHz).

Most of these studies process uncompressed partial bitstreams that are stored

in external memory. However, c2PCAP can process compressed partial bitstreams

that are stored in BRAMs. This has two main advantages: (i) One BRAM can hold

more compressed partial bitstreams than regular uncompressed partial bitstreams (ii)

Access time to a partial bitstream in a BRAM is much shorter than the access time

to a partial bitstream in an external memory. Decompression is realized in c2PCAP

during reconfiguration time without sacrificing from reconfiguration speed. In addition

to the configuration bitstream’s storage type, none of above-mentioned studies offers

a processor-independent platform. All studies use MicroBlaze or PowerPC as their

reconfiguration manager which results in large design sizes. However, our c2PCAP core

is very small, which is 261 slices. Another disadvantage of using MicroBlaze/PowerPC

as a reconfiguration flow controller is that they have to postpone their computational

jobs while they are busy with reconfiguration. This will slow down the operations

which are executed by them. Therefore it has more sense to use a stand-alone core

which is dedicated only for control of reconfiguration flow. Apart from these, c2PCAP

core use either parallel SelectMAP [10] or parallel ICAP [10] method in 8/16/32-bit

modes, hence we send 8/16/32 bits at each configuration clock cycle.

Moreover, above mentioned designs either suffer from speed or do not offer a

processor-independent self-reconfiguration platform for low-cost state-of-the art FP-

GAs. In addition to these, overclocking of ICAP module of an FPGA is not recom-

mended by the device vendor. To run safely, the speed limit of ICAP is 100MHz.

Therefore, the maximum throughput that can be achieved is 400MB/s (32-bit mode,

not supported in Spartan-6) theoretically. Since Spartan-6 supports reconfiguration

through ICAP only in 16-bit interface, the maximum theoretical reconfiguration speed

through ICAP at 100MHz is 200MB/s. In our case, we propose a processor-independent

self-reconfiguration platform for low-cost Spartan-6 FPGA with a safe throughput of
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200MB/s (Spartan-XC6SLX45 ICAP, 16-bit mode, 100MHz).

3.2. Related Works on Configuration Compression Techniques

In the literature, there are studies which are directed for reducing the configu-

ration size by proposing new mapping, placement, routing algorithms [39–44]. This

step is done at the time of bit-stream generation or before it. However our method is

bit-stream compression which is independent from mapping, placement, routing. Our

technique is applied only to partial bitstreams generated by vendor tools such as bitgen

from XILINX ISE.

There are various studies in the field of configuration compression and decom-

pression techniques [45–50]. Common approaches are Run-length encoding, Huffman

coding, Arithmetic coding, LZ based coding and their versions that are improved, ex-

tended or manipulated. Our study and some of example studies are summarized in

Table 3.2.

Table 3.2. A summary of some previous studies on configuration compression

techniques.

Study Technique Approach Decompression Space Savings Target

(up to) Device

[45] Huffman, Arithmetic Wildcard complex 80% Virtex

and LZ coding

[46] Adaptive LZW intra-frame, complex 45% for partial, Virtex

inter-frame and 38% for complete

inter-bitstream

regularities

[47] RL encoding Golomb code simple 78% N/A

[50] LZ dictionary complex 41% N/A

Our Study RL encoding XOR method simple 99% for partial All Xilinx

FPGAs

In [45], Li and Hauck have researched different types of configuration compression

techniques such as Huffman coding, Arithmetic coding and LZ coding for the Virtex de-

vices. They have also developed very efficient algorithms including readback algorithm,

frame reordering techniques and the wildcard approach. Although the algorithms they

have developed seem to be very efficient, they are focused on only compression methods
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for Virtex FPGAs and except the wildcard approach, all other algorithms are related

to complete bitstreams of Virtex devices. Moreover, in the best case, the results of the

wildcard approach seems to have 80% space saving.

Gu and Chen has developed an adaptive LZW algorithm for compression of Virtex

partial bitstreams in [46]. By exploiting similarities among the hardware resources

in a CLB array, they have taken the advantage of intra-frame, inter-frame and inter-

bitstream regularities. In the best case, they achieved 45% compression ratio for partial

bitstreams and approximately 38% compression ratio for complete bitstreams.

In [47], for the purpose of partial reconfiguration, bitstream extraction and merg-

ing techniques have been implemented. By extracting bitstreams between a base con-

figuration and a combination of base configuration and a new small module, they obtain

a bitstream that contains a high amount of zeros. Since they aimed to implement a

platform independent partial bitstream manipulation, they have generated their par-

tial bitstreams with their extraction method. However, the difference based partial

bitstream generation approach from XILINX does the similar thing for the partial bit-

stream generation. Hence, we do not need such an extraction between two complete

bitstreams. In order to compress bitstreams, they have exploited the run-length encod-

ing with a modified Golomb code. Their results show that they achieved approximately

78% space saving.

In [50], Dandalis and Prasanna propose a novel configuration compression tech-

nique that can be applied to both complete and partial configuration. In their work

they propose a compact memory representation for the dictionary used by any LZ

based algorithm. Moreover they reduce the memory requirements of the dictionary

by selectively decomposing strings in the dictionary. With their new approach they

demonstrate up to 41% space saving in memory for configuration bitstreams.

In the literature, there are studies ( [43, 44] and etc.) which are directed for

compressing configurations. In these studies, the compressing step is done at the time

of bit-stream generation or before it. However our method is bit-stream compression
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which is independent from configuration compression and it can be directly used after

configuration compression to improve the compression rate. Therefore, the subject

configuration compression will not be explained in detail and not mentioned any more.
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4. A RECONFIGURATION ENGINE FOR LOW-COST

FPGAs: PARALLEL CONFIGURATION ACCESS PORT

(PCAP)

This chapter describes custom soft PCAP core, which controls the partial recon-

figuration flow through SelectMAP port and supplies configuration clock for reconfigu-

ration. Because of being written entirely in VHDL, this PCAP core is highly portable

and can also be used for all other Xilinx FPGA architectures. Thus it is not nec-

essary to use an external intelligent agent to control the partial reconfiguration flow.

As a result, using this PCAP reduces hardware cost and power consumption of a self

reconfigurable system.

Figure 4.1. Possible reconfiguration areas in Virtex-4 and Spartan-3.

In Virtex-4 devices the minimal reconfiguration unit is frame, thus a Virtex-4

FPGA can be reconfigured two dimensional by issuing some previous commands. A

frame on a Virtex-4 device can be reconfigured while the rest of the device continues

its normal operation. If some bits of the new frame do not change in comparison to

the older one, it is guaranteed that there will be no glitches on this bits during the

reconfiguration. However, on a pure Spartan-3 FPGA the minimal reconfiguration

unit is a whole CLB column as shown in Figure 4.1. It is not guaranteed that no

glitches will happen during the reconfiguration process. As a result of this problem the

reconfigurable area must be comprised of whole CLB columns, from top to bottom of
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Figure 4.2. Hardware architecture of whole system with PCAP core.

the device. The only issue is here the FPGA pinout, there must be no used pins in the

reconfigurable area [28].

4.1. PCAP Architecture

The target FPGA Spartan-3 in our system is configured by itself through its

SelectMAP port under the control of PCAP defined within the FPGA. Through the

parallel SelectMAP interface, which is 8 times faster than serial JTAG interface at

the same frequency, the partial reconfiguration information is accepted by the target

FPGA and the reconfiguration process is executed again by the same target FPGA,

where this unique FPGA acts as not only a slave but also a master at the time of

reconfiguration as shown in Figure 4.2.

As shown in Figure 4.3, in order to generate configuration clock frequency we have

used a Digital Clock Manager (DCM) component, which is available within FPGA.

Since we generate CCLK signal within FPGA, it acts as master, but at the same time

we accept the CCLK signal through the SelectMAP interface into FPGA as if the

signal comes from other intelligent agent, where the FPGA acts as slave. The source

of CCLK is not important for the FPGA. The main point is that CCLK comes from

outside. As a result of this, we should use the SelectMAP port in slave mode by setting

the MODE pins as in Figure 4.3. The PCAP core reads a byte from the BlockRAM
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Figure 4.3. PCAP Core and SelectMAP interface.

at each clock cycle. Under the control of CS, WRITE, CCLK signals, this byte is sent

to SelectMAP interface. When the CCLK speed is set to 50 Mhz, the reconfiguration

speed is 50MByte/s. Note that the reconfiguration speed is independent from the size

of partial bitstream. The BUSY signal is only used if the configuration clock frequency

exceeds 50 Mhz. The PCAP core can be configured to operate up to 50 Mhz. We have

not exceeded 50 Mhz yet, that’s why we have not used BUSY signal.

The configuration flow of an FPGA for run-time reconfiguration via PCAP is

shown in Figure 4.4. First of all, we have generated an initial configuration bitstream

with empty BlockRAM. However, in this initial configuration file, the BlockRAM is

allocated for partial bitstreams. After generating the initial configuration bitstream we

have generated also the partial bitstreams with the help of bitgen -r flow [10]. Then

we have converted the partial bitstream files to BlockRAM coefficient files. Afterwards

we have loaded BlockRAM of Spartan-3 with these coefficient files, then we have gen-

erated the modified configuration bitstream that includes also partial configuration

information.

The storage of partial reconfiguration bitstream requires also an additional ex-

ternal hardware for reconfigurable systems. In the most of reconfigurable systems the

partial reconfiguration file is stored in an external non-volatile device. It can be read

from there under the control of either an external intelligent agent or the FPGA itself,

where FPGA acts as a slave and master respectively. Contrary to the standard meth-
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Figure 4.4. Configuration steps for PCAP core.

ods based on storing partial reconfiguration bitstream on external non-volatile devices,

the partial reconfiguration bitstream in this thesis is stored in BlockRAM within the

target FPGA. As a result of this new approach, there is no need to use an additional ex-

ternal device for storing partial reconfiguration bitstream for any system, which works

continuously after the initial configuration.

4.1.1. File Converter

To store information in a BlockRAM there is a predefined file type with extension

“.coe” that can be associated with the memory coefficients. After generating partial

bitstream files, we have converted these files to a suitable form with “.coe” extensions

using a file converter module, which is written in Java language, in Figure 4.5. Note that

the number of partial bitstreams needs not to be equal to the number of BlockRAMs.
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Figure 4.5. File conversion from partial bitstream file to BlockRAM coefficient file.

Figure 4.6. PCAP core configuration control flow diagram.

4.1.2. Dynamic Partial Self-Reconfiguration Flow

Since we have accomplished a dynamic partial self-reconfiguration through the

SelectMAP port, the developed PCAP core behaves as if it is a mirror of SelectMAP

port, as same in ICAP. The following flow in Figure 4.6 is very similar to “SelectMAP

configuration Flow Diagram” in [10] except that PROG, INIT, DONE, BUSY pins are

not taken into account.

The first three control signals PROG, INIT, DONE are only used during complete

(re)configuration. BUSY signal is used if the configuration clock (CCLK) frequency is
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greater than 50Mhz. Due to the fact that there is only a 50Mhz oscillator available

on Spartan-3 Starter Board we have chosen the CCLK for our system exactly 50Mhz,

thus we do not need to use BUSY indicator signal. Under some circumstances, such as

using BUSY indicator signal where it is needed, the developed design can be clocked

with any other frequency values, which are supported by Spartan-3 FPGA and its

SelectMAP interface. We have experimented, that our PCAP core can run safely at

all frequencies up to 50Mhz.

4.2. Case Study: Run-Time DCM Reconfiguration

The soft PCAP core, which is a pure VHDL code, has been synthesized on

Spartan-3S200 Starter Kit Board. In this work we have reconfigured a clock out-

put of Digital Clock Manager (DCM), which drives the complete system, at run-time.

Such a DCM reconfiguration approach is described in detail in [23].

There are various applications, where clock frequency of a system should be

changed at run-time. Clock scaling method in [23] is one of them, which is mostly

used to decrease FPGA power consumption by changing clock frequency of different

components of system at run-time. Changing data transmission speed of a system,

and other typical applications include speed drives, inverters, computers and computer

controlled equipment, deep well pumps, industrial machinery, ships, aircraft.

In this work, a 4-bit up-down counter is taken as an example. This counter either

works with 5 Mhz or 50 Mhz, which is accomplished by run-time DCM reconfiguration

via PCAP core. The size of each partial bitstream for DCM reconfiguration is 5 KByte

. The reconfiguration speed is 50 MByte/s, which means that the DCM reconfiguration

via PCAP core takes approximately 0.1 ms. This counter is used solely to show that

such a reconfiguration approach is possible for other reconfigurable systems where the

frequency of a system or a component of system can be changed at run-time without

affecting anything else in complete system.

To be able to do reconfiguration we have firstly generated complete bitstream files
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Figure 4.7. The complete system overview in FPGA Editor.

Table 4.1. FPGA resources.

Occupied Occupied Occupied

FPGA Slices BlockRAMs DCMs

PCAP Core 324 of 1920 - 1 of 4

Partial Bitstream Storage - 6 of 12 -

Up-down Counter 41 of 1920 - 1 of 4

System 365 of 1920 6 of 12 2 of 4

and then with the help of bitgen tool two fully routed NCD (Native Circuit Description)

file for each different frequency value. Contrary to the approach in [23] for generating

partial bitstreams, the difference based approach is used in this work.

All above mentioned components of this system can be viewed in Figure 4.7,

which gives an overview of complete system in the FPGA-Editor. To store partial

bitstreams only 6 of 12 BlockRAMs are used as shown in Figure 4.7, and solely 365

of 1920 slices are occupied and also 2 of 4 DCMs are used in this project. However,

just for PCAP core 324 of 1920 slices, which is approximately 16% of a Spartan-3S200

FPGA, and 1 of 4 DCM are used. These results are shown in detail in Table 4.1, which

summarizes the implementation cost. Reconfiguring a DCM is actually reconfiguration
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of the single column where DCM is. As a result, it can be obviously seen that PCAP

core is much smaller than most of the soft controller.
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5. A RECONFIGURATION ENGINE FOR COMPRESSED

PARTIAL BITSTREAMS: COMPRESSED PARALLEL

CONFIGURATION ACCESS PORT (cPCAP)

5.1. cPCAP Architecture

Likewise PCAP, the cPCAP core controls the reconfiguraton flow on the Spartan-

3 FPGA through its SelectMAP port. Through the parallel SelectMAP interface,

the compressed partial reconfiguration information is accepted and the reconfiguration

process is executed again by the same target FPGA, where this unique FPGA acts as

not only a slave but also a master at the time of reconfiguration as shown in Figure

5.1. While PCAP core processes uncompressed bitstreams, cPCAP core processes

compressed bitstreams.

Figure 5.1. Hardware architecture of whole system with cPCAP core.

As shown in Figure 5.2, the cPCAP core reads compressed bitstream from the

BlockRAM and decompresses the stream simultaneously, in order to send a byte to Se-

lectMAP interface at each clock cycle. Since we achieve the decompression of bitstream

information at the time of reconfiguration, we do not need any additional time for de-

compression. Therefore when the CCLK speed is set to 50 MHz, the reconfiguration

speed is 50MByte/s exactly. Note that the reconfiguration speed is independent from

the size of partial bitstream. The BUSY signal is only used if the configuration clock
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frequency exceeds 50 MHz. In our study, the cPCAP core can be configured to operate

up to 50 MHz. The configuration flow of an FPGA for run-time reconfiguration via

cPCAP is shown in Figure 5.3. The uncompressed partial bitstreams are generated

with the help of bitgen -r flow [10].

Figure 5.2. cPCAP Core and SelectMAP interface.

Initially, we generated an initial configuration bitstream with empty BlockRAM

likewise for PCAP core. After generating appropriate partial bitstreams for different

designs, we compressed and converted partial bitstreams. For the compression, we

preferred to use run-length encoding [47] because of its simplicity. The compression

methods will be mentioned in Section 7 in detail. After this step, we initialized Block-

RAM contents with the compressed bitstream values. And, finally, we generated the

modified configuration bitstream that includes also partial configuration information

on the BlockRAMs as compressed.

5.1.1. File Compression and Conversion

There are a lot of different methods to store information in a BlockRAM. Us-

ing generic template from language templates in ISE is one of them. According to

the bit-width and -depth of BlockRAM, there are various prepared pieces of code for

BlockRAM available, which can be easily inserted into the BlockRAM HDL source file.

Since we need to store partial bitstream bytes in BlockRAM, we have used one of these

BlockRAM template.

After generating partial bitstream files, we have compressed these files and con-
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Figure 5.3. Configuration steps for cPCAP core.

Figure 5.4. File conversion from partial bitstream file to BlockRAM coefficient file.



34

verted them to a suitable form with “.vhd” extensions using a file compression and

converter module, which is written in Java language, in Figure 5.4. Note that the

number of partial bitstreams needs not to be equal to the number of BlockRAMs.

Since both PCAP and cPCAPs send uncompressed bitstreams to the SelectMAP

interface of the target FPGA, both have the same configuration control flow. Hence,

the configuration control flow given in Figure 4.6 is also valid for cPCAP core.

5.2. PCAP vs. cPCAP

Table 5.1. Occupied resources for PCAP and cPCAP cores.

PCAP cPCAP

(without compression) (with compression)

BlockRAM 6 of 12, %50 1 of 12, %8

Slices 365 of 1920, %19 324 of 1920, %16

DCM 1 of 4, %25 1 of 4, %25

Although both cores have many similarities, cPCAP outperforms PCAP core,

because of its compressed bitstream processing capability. Comparison of PCAP and

cPCAP is presented in Table 5.1. Here, we compare PCAP core and cPCAP core for

the toy example given in Section 4.2. Although cPCAP core contains decompression

module additionally, it occupies less slices than PCAP. The reason of this as follows:

while PCAP uses BlockRAMs as IP cores, cPCAP exploits BlockRAM instance source

codes.

After adding the decompression module to the cPCAP core, we have needed to

use only 1 BlockRAM to store two different compressed partial bitstreams within the

BlockRAM. With this compression approach we have accomplished at least 76% space

saving approximately, where the compression ratio is actually based on the structure

and size of the partial bitstream.
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6. A RECONFIGURATION ENGINE WITH INTERNAL

CONFIGURATION INTERFACE: EXTENDED VERSION

OF COMPRESSED PARALLEL CONFIGURATION

ACCESS PORT (cPCAPv2)

In this section, partial self-reconfiguration of Xilinx Spartan-6 FPGA with second

version of cPCAP (cPCAPv2) is explained in detail. The cPCAPv2 core has more

capabilities than pure cPCAP core:

• cPCAPv2 works with both SelectMAP interface and ICAP interface

• cPCAPv2 can run faster than 50MHz

• It is more suitable for new generation devices such as Spartan-6

There is still no partial reconfiguration tool support on low-cost FPGAs such as

old-fashioned Spartan-3 and state-of-the-art Spartan-6 FPGA families by Xilinx. This

forces the designers and engineers, who are using the partial reconfiguration capability

of FPGAs, to use expensive families such as Virtex-4, Virtex-5 and Virtex-6 which are

officially supported by partial reconfiguration (PR) software. Moreover, Xilinx still

does not offer a portable, dedicated self-reconfiguration engine for all of the FPGAs.

Self-reconfiguration is achieved with general-purpose processors such as MicroBlaze and

PowerPC which are too overqualified for this purpose. In this part of the thesis, we

propose a new self-reconfiguration mechanism for Spartan-6 FPGAs. This mechanism

can be used to implement large and complex designs on small FPGAs as chip area

can be dramatically reduced by exploiting DPSR feature for on-demand functionality

loading and maximal utilization of the hardware.

To achieve a safe communication between the fixed area and the reconfigurable

area, there should be routing resources, which are not affected during reconfiguration

process. To do this, completely fixed and static hard bus macros (HBM) are preferred.
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In this part of the thesis, we propose an extended version of our cPCAP [9] core

which controls the partial reconfiguration flow through SelectMAP/ICAP port and sup-

plies configuration clock for reconfiguration. The cPCAPv2 core with block RAM con-

troller, bitstream decompressor unit and ICAP FSM manages the self-reconfiguration

process through ICAP interface on a Spartan-6 FPGA. The details of design flow,

generation of PBs, the way we store the PBs can be found in [9].

6.1. Configuration on Spartan-6 FPGAs

The Spartan-6 family is built on a 45-nm, 9-metal layer, dual-oxide process tech-

nology [51]. The Spartan-6 was marketed in 2009 as a low-cost solution for automotive,

wireless communications, flat-panel display and video surveillance applications [51].

The partial self-reconfiguration on a Spartan-6 FPGA can be achieved through

ICAP module of the device up to 100MHz with a 16-bit interface only. Spartan-

6 FPGAs do not support 8-bit and 32-bit for ICAP. Therefore, the maximum self-

reconfiguration speed that can be achieved on a Spartan-6 FPGA is 200MB/s. In

addition to this, the external SelectMAP configuration interface can also be used for

initial or partial reconfiguration. Note that some of Spartan-6 FPGAs (e.g. XC6SLX4

devices or devices using TQG144 or CPG196 packages.) do not offer the SelectMAP

interface.

Opposite to the Spartan-3 FPGAs, Spartan-6 FPGAs offer the partial reconfigu-

ration in a two dimensional fashion [32]. The atomic unit that can be reconfigured is a

single frame within a clock region (in terms of CLB configuration). The configuration

is in frames that covers 16 CLBs in the height. Therefore, for selecting reconfigurable

area, the designer must take into account that the selected area should be within the

same clock region, i.e. in the same 16-CLB-row. In Figure 6.1, three identical selected

reconfigurable areas RA-1, RA-2, RA-3 are demonstrated on a Spartan-XC6SLX4 (the

smallest member of Spartan-6 family) FPGA. The Spartan-XC6SLX4 is used only for

demonstrative purposes, no actual design is implemented on this device. All imple-

mentations in this study are done on Spartan-XC6SLX45 FPGA. These areas have
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Figure 6.1. Selected reconfigurable areas on a Spartan-6 FPGA.

the same size but they are located in different portions of the FPGA. The RA-1 con-

sists of 11CLB columns with 16-CLB-height in the same clock region. The RA-2 has

also 11CLB columns with 16-CLB-height and is located in four different clock regions.

The RA-3 has also 11CLB columns with 16-CLB-height and is located in two different

clock regions. The generated PB for RA-1 will have 11CLB×(#Frames/CLB) frames

information. However RA-2 will have 4CLB×(#Frames/CLB) frames in clock regions

X0 Y 2 and X0 Y 3 separately and 7CLB×(#Frames/CLB) frames in clock regions

X1 Y 2 and X1 Y 3 individually. So RA-2 will have 22CLB×(#Frames/CLB) frames

information. In the same way, RA-3 will have 11CLB×(#Frames/CLB) frames in

clock regionsX1 Y 0 andX1 Y 1 individually which results in 22CLB×(#Frames/CLB)

frames totally. Therefore, generated bitstream for RA-2 and RA-3 will be two times

greater than RA-1, even if all portions does the same job. As a result, the reconfig-

urable area should fit into a clock region. Otherwise the number of frames included

into the bitstream information will increase and the size of PB will be greater than

expected. When the logic occupation in a clock region is not enough, then the neighbor
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clock regions can also be utilized.

6.2. Self-Reconfiguration Platform

Our reconfiguration engine cPCAPv2 can use either SelectMAP or ICAP inter-

face in any bit-width combination (i.e. 8, 16, 32-bit). We have adapted cPCAP core [9]

to run on Spartan- XC6SLX45 FPGA with configuration interface ICAP 16-bit mode

at 100MHz. Since cPCAPv2 core is entirely written in VHDL, it can be adapted to any

other Xilinx FPGA to control the reconfiguration flow. As there is no SelectMAP inter-

face on Spartan-XC6SLX4 FPGA devices (i.e. XC6SLX4, XC6SLX45, XC6SLX45T),

we have used ICAP 16-bit mode with cPCAPv2 core.

Figure 6.2. Hardware architecture of the system over internal configuration port

(ICAP) on a Spartan-6 FPGA.

As shown in Figure 6.2, cPCAPv2 core reads compressed PBs from on-chip Block-

RAM and decompress them on-the-fly at the time of reconfiguration. Therefore there

is no downtime during decompression. As we use block RAMs to store compressed

PBs and do not use any custom bus type, we have achieved the maximum throughput

attainable by ICAP, 200MB/s (16-bit mode, 100MHz). The compression of PBs is

done at design time. The method used for compression is the run-length encoding and

does not require a complex decompression process. The architecture details of pure

cPCAP and the compression/ decompression mechanisms can be found in [9].
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Figure 6.3. 4-bit single slice Spartan-6 HBM.

For the glitchless data flow between fixed area and reconfigurable area, we have

used 4-bit slice based HBMs. Actually, there are no slice based HBMs offered by

Xilinx for Spartan-6 FPGAs. However, there are some bus macros which are directly

used for some target FPGA families (e.g. Virtex-5, Virtex-6) from Xilinx. Instead of

designing a new bus macro we have manipulated and adapted Virtex-5 bus macros to

the Spartan-6 bus macros. The 4-bit-width single slice HBM component is illustrated

in Figure 6.3. In Figure 6.4, the internal structure and connections of our single slice

synchronous Spartan-6 bus macro can be seen.

6.3. Test Results

Table 6.1. PB sizes and reconfiguration times for forward counter example.

Original

PB Size

(Bytes)

Compressed

PB Size

(Bytes)

# of

BRAMs

Space

Savings

Reconf.

Time[µs]

P1 (1Hz) 473 401 0.196 15.22% 2.365

P2 (5Hz) 473 401 0.196 15.22% 2.365

P3 (10Hz) 473 401 0.196 15.22% 2.365

P4 (20Hz) 473 401 0.196 15.22% 2.365

Total 1892 1604 0.783 15.22% 9.46

At first we have implemented our cPCAPv2 core for dynamically reconfiguring a

few small sample circuits. The first one we have tested is a 4-bit forward counter with

different speeds. To switch between different speeds we have reconfigured the clock
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Figure 6.4. Inside of Spartan-6 slice based HBM.
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input of the forward counter. According to this small example, there are 4 different

speeds: 1Hz, 5Hz, 10Hz and 20Hz ( to be observable by human eye) respectively. We

have written a process to obtain such small clock periods. For the reconfiguration view,

we have actually changed the trigger clock of this process. To be able to have different

clock values, we have generated different clock values from digital clock manager (DCM)

of Spartan-6 FPGA and changed these values at runtime by reconfiguring the counter

circuit through ICAP under the control of cPCAPv2 core.

Table 6.2. PB sizes and reconfiguration times for HBM tester example.

Original

PB Size

(Bytes)

Compressed

PB Size

(Bytes)

# of

BRAMs

Space

Savings

Reconf.

Time[µs]

P1 603 349 0.170 42.12% 3.015

P2 603 348 0.169 42.29% 3.015

Total 1206 697 0.340 42.2% 6.03

There are various applications, where clock frequency of a system should be

changed at run-time. Clock scaling method in [23] is one of them, which is mostly

used to decrease FPGA power consumption by changing clock frequency of different

components of system at run-time. Adjusting data transmission speed of a system,

and other typical applications include speed drives, inverters, computers and computer

controlled equipment, deep well pumps, industrial machinery, ships, aircraft. Actually,

we are aware of the dynamic reconfiguration port (DRP) to reconfigure DCM outputs.

But we just wanted to verify the correctness of our reconfiguration platform on a

Spartan-6 FPGA. In this example, each PB is composed of only one frame. In Table

6.1, the original, compressed PB sizes and the reconfiguration times are available. In

this example, we have achieved to put four different compressed PBs in a single block

RAM. We have only used two Bytes (two consecutive 00 bytes)separators between

each compressed PBs (total overhead is six Bytes). Note that, we have not excluded

header information from original PB files generated by bitgen tool of Xilinx; before the

compression process, we directly applied run length encoding compression technique

to the PB files at design time.
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The second small example is used to test the functionality of our HBMs. In this

tiny example, we have tested two different small logical circuits, which gives different

four-bit output values to the on-board LEDs. In this example, each PB is a composition

of 2 frames. In Table 6.2, the original, compressed PB sizes and the reconfiguration

times are available.

In addition to these tiny examples, the cPCAPv2 is also used to change the tasks

(modes) of a Reconfigurable Image Processing Element (RPE). This case study can be

found in [21].
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7. A RECONFIGURATION ENGINE UTILIZING

INTER-BITSTREAM COMPRESSION: DOUBLE

COMPRESSED PARALLEL CONFIGURATION ACCESS

PORT (c2PCAP)

Our most improved reconfiguration engine is called c2PCAP (double times com-

pressed Parallel Configuration Access Port). The c2PCAP core behaves as if it is a

mirror of SelectMAP port, as same in ICAP. The configuration control flow in this

work is very similar to “SelectMAP configuration Flow Diagram” in [10] except that

PROG, INIT, DONE pins are not taken into account in our study. This control flow

has been already illustrated in detail in Figure 4.6 in Section 4.1.2.

7.1. c2PCAP Configuration Flow

The configuration flow for c2PCAP is given in Figure 7.1. In this Figure, numbers

over the boxes represent steps for the configuration under the control of c2PCAP.

These steps are given as follows:

(i) Generate all necessary partial bitstream files with bitgen -r flow

(ii) Compress bitstreams by run-length encoding and their similarities

(iii) Select optimum partial bitstream set with the smallest size

(iv) Store bitstreams either on off-chip or on-chip BlockRAM

(v) Load FPGA with initial configuration

(vi) If partial reconfiguration is requested, check whether partal bitstream is already

available on FPGA

(vii) If the desired PB is not available on FPGA, prefetch it from the off-chip memory

(viii) If it is either already available or pre-fetched decompress it

(ix) As decompression process starts, start reconfiguration also immediately



44

Figure 7.1. Configuration steps for c2PCAP.
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Abovementioned steps will be examined in detail in the following sections. Our

proposed c2PCAP is designed for decompressing the compressed bitstreams stored in

the on-chip BlockRAM of the Xilinx FPGAs.

7.2. Compression

7.2.1. Partial Bitstream Similarity Extraction

Let pi and pj denote two partial bitstreams that successively reconfigures a region

on the FPGA for DRP2P interconnects. Since this region has to be determined during

design time, the length of both partial bitstreams are the same. Then we can extract

similarities between two partial bitstreams by a simple XOR operation.

pij = pji = pi ⊕ pj (7.1)

Let pij be named as the joint bitstream of pi and pj. Obviously, as the similarities

between pi and pj increases, the number of zero entries in pij increases. If there are

N different communication scenarios in an application, then there are C (N, 2) joint

bitstreams. Note that XOR operation also helps in generating partial bitstream from

another one by using the joint bitstream:

pj = pi ⊕ pij (7.2)
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7.2.2. Compression of Partial Bitstreams

We introduce a zero run length coding technique to compress both types of bit-

streams. In this technique, each byte in the bitstream is checked whether it is 0 or not.

If it is not zero, it is directly written to the BRAM file. Otherwise, firstly the number

of zero bytes is determined. Then the byte count is written to the BRAM file and the

parity bit of the related memory location is set. Let li and lij represent the lengths of

compressed partial and joint bitstreams, namely pci and pcij respectively. Note that the

length of compressed bitstreams is usually smaller than the related partial and joint

bitstreams.

7.2.3. Selection of Optimal Compressed Bitstream Set

There are C (N, 2) + N compressed bitstreams for N communication scenarios.

We define Is as the optimal set with N compressed bitstreams and this set can be

used in the generation of all partial bitstreams by using Equation 7.2 after decom-

pression. Therefore it is obvious that Is must contain at least one compressed partial

bitstream. The other members of Is can be either compressed partial or compressed

joint bitstreams. Hence, our aim is to obtain Is such that the sum of the lengths of the

selected compressed bitstreams is minimum so as to use as small BRAM area as possi-

ble. In this case, our problem turns out to be a subset sum problem which is known to

be NP-complete. The fastest known exact algorithms utilizing dynamic programming

whose worst case execution time would be around O
(

K22K
)

, where K = C (N, 2)+N

if we had used it for the solution of our problem. However we propose a faster exact

algorithm that has the time complexity of O
(

N22N
)

, because the Algorithm 7.2 is

designed to omit infeasible solutions in the design exploration space. It operates on

the indices of compressed bitstreams and initially assumes that the set of compressed

partial bitstreams is the best solution (lines 1, 2). Then it exhaustively searches all

possible solutions. In each iteration, there are m ≥ 1 compressed partial bitstreams

(lines 3-6). The remaining members are compressed joint bitstreams which are gen-

erated from Gx (line 6) and R (line 7). Gx is the subset of Is and it contains partial

bitstreams pi that have to be stored in BRAM. R contains the indices that are in Is
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but not in Gx. Compressed joint bitstreams pij will be generated from the compressed

bitstreams whose first index is from Gx and second index is from R. Initially the cost of

p′is (i ∈ Gx) is calculated (line 8). Then the costs of joint bitstreams which use i ∈ Gx

as the first index are evaluated one by one.The index pair (i, j) for compressed joint

bitstreams is selected in a way to minimize the storage cost in BRAM (lines 8-14).

A sample run of our algorithm is available in Figure 7.3. The sizes of compressed

partial and joint bitstreams are shown in tables. The rule for filling the tables is defined

with the following equations:

Table(pi, pi) = li

Table(pi, pj) = Table(pj , pi) = lij
(7.3)

There are four different communication scenarios in this example. Therefore,

there are four partial, ten joint bitstreams. Each row includes sizes of one compressed

partial bitstream and N − 1 compressed joint bitstreams that can be used in the

generation of all other partial bitstreams with the original bitstream in that row. For

example, Table(p2, p2) shows the bit-length of pc2 and Table(p2, p1), Table(p2, p3) and

Table(p2, p4) show the bit-lengths of pc21 (= pc12), p
c
23 and pc24 respectively. Hence, pc1, p

c
3

and pc4 can be generated as follows: p1 = d(pc2) ⊕ d(pc12), p3 = d(pc2) ⊕ d(pc23) and

p4 = d(pc2)⊕ d(pc24). Here, d(.) is the decompression function explained in Section 7.4.

The best intermediate solutions are identified with shaded cells and bold entries in

each table. At first, the initial cost (line 2 in Figure 7.2) is calculated as in the first

table in Figure 7.3. The second table calculate the costs of partial bitstreams set for

m = 1 (the first iteration of “while” loop), where Gx contains only a single partial

bitstream. In tables 3 to 8, where Gx contains two different original bitstreams, the

costs of partial bitstreams set for m = 2 (the second iteration of “while” loop) are

calculated. In tables 9 to 12, where Gx contains three different original bitstreams,

the costs of partial bitstreams set for m = 3 (the third and last iteration of “while”
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/*Pick the smallest partial bitstream set*/

1: Is = I = {1, 2, ..., N − 1, N}
2: cost=

∑

i∈N li;

3: m=1;

4: while (m < N) do

5: Km = {the set of all subsets with m members from I}
6: for each Gx ∈ Km, 1 ≤ x ≤ C (N,m) do

7: R = I −Gx;

8: sum =
∑

i∈Gx
li;

9: for each j ∈ R do

10: costj = mini∈Gxlij

11: i∗ = {the i ∈ Gx with costj};
12: if sum+ costj ≥ cost then

13: break;

14: end if

15: sum+ = costj ;

16: S = S ∪ {i∗j};
17: end for

18: if sum < cost then

19: cost = sum;

20: Is = Gx ∪ S;

21: end if

22: end for

23: m++;

24: end while

Figure 7.2. Picking the smallest partial bitstream set.
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Figure 7.3. Steps of the bitstream set selection algorithm (Figure 7.2) for an

eight-core implementation on a Virtex-4 FPGA. (X = XOR, if i 6= j; X = AND, if i =

j).

loop) are calculated. In this example, the solution (Is = 1,3,{23},{34}) is found in the

fourth table (m = 2, Iteration = 2). Note that, the inner “foreach” loop (lines 9-17)

of Figure 7.2 finds the minimum value in each column. The iterations for each m value

are relevant to outer “foreach” loop (lines 6-22) of Figure 7.2.

7.2.4. Storage of Partial Bitstreams on Memory

After compression and selection of optimum set processes, partial bitstream of

each communication scenario is stored as initial values for BlockRAM or off-chip RAM.

7.3. c2PCAP Architecture

Our most improved reconfiguration engine, c2PCAP has more capabilities than

both PCAP and cPCAP cores:

• Compression ratio of c2PCAP core is much more than PCAP and cPCAP cores

• c2PCAP core can run up to the reconfiguration speed limits of the target devices
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• It has the ability to work both SelectMAP and ICAP interfaces

• For ICAP interfaces, it does not require any external wires

• It exploits similarities of partial bitstreams

All processes including “Decompression”, which are being executed at run-time,

are done under the control of c2PCAP core.

Figure 7.4. Hardware architecture of the system over external configuration port.

An FPGA from XILINX configures itself through its SelectMAP port under the

control of c2PCAP. Through the parallel SelectMAP interface, the partial reconfigu-

ration information is accepted and the reconfiguration process is executed again by

the same target FPGA, where this unique FPGA acts as not only a slave but also a

master at the time of reconfiguration as shown in Figure 7.4. Note that the SelectMAP

interface is not only dedicated for partial reconfiguration (PR), it might also be used

in other designs for external configuration memory (CR:Complete (Re)Configuration,

S is used for switching between PR and CR).

The similar structure is also used for devices, which have ICAP modules like

Spartan-6, Virtex-4 FPGA. So, through its ICAP interface, the Xilinx FPGA configures

itself under the control of c2PCAP core. As shown in Figure 7.5, it is noted that the

supported bit-width of ICAP for configuration varies considerably from architecture

to architecture: 8-bit for Virtex-II(Pro), 16-bit for Spartan-6, 8/32-bit for Virtex-4,

8/16/32-bit for both Virtex-5 and Virtex-6 [10].
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Figure 7.5. Hardware architecture of the system over internal configuration port.

As shown in Figure 7.6, the configuration clock (CCLK) is internally generated

by DCM. Since FPGA acts as slave during reconfiguration, the source of CCLK is

not important for the FPGA. The c2PCAP core reads a byte from the BRAM at each

clock cycle. Under the control of CS/CE, WRITE, CCLK signals, this byte is sent to

SelectMAP for Spartan-3 and to ICAP interface for Virtex-4.

Figure 7.6. c2PCAP core and SelectMAP/ ICAP interfaces(X:7/15/31, ∗: only for

SelectMAP, Ω:only for ICAP).

The bitstream information, which is accepted from BRAM, is compressed. Since

the decompression of bitstream information is achieved at the time of reconfiguration,

there is no need any additional time for decompression. Therefore when the CCLK
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speed is set to 75 MHz, the reconfiguration speed is 75MB/s. Note that the reconfigu-

ration speed is independent from the size of partial bitstream. The BUSY signal is only

used if the configuration clock frequency exceeds 50 MHz. In this study, the CCLK for

c2PCAP core can be configured to operate up to 75 MHz for Spartan-3 and 100 MHz

for Spartan-6, Virtex-4. As a result we reached 75MB/s (75MHz, 8-bit SelectMAP) on

Spartan-3, 200MB/s (100MHz, 16-bit ICAP) on Spartan-6, 300MB/s (75MHz, 32-bit

ICAP) for compressed and 400MB/s (100MHz, 32-bit ICAP) for uncompressed partial

bitstreams on Virtex-4.

7.4. Decompression

It is done by hardware and consists of three components as explained in the

following subsections.

7.4.1. Look up table

It is a BRAM unit and contains the indices of partial bitstreams which are used

in the generation of N communication scenarios. Each communication instance is

represented by two address fields in the table. Fields I and II represent the address

entries for the compressed partial and the compressed joint bitstreams respectively. If

a communication instance can be implemented solely by a partial bitstream, then its

corresponding joint bitstream entry is null. An example is shown in Table 7.1 for N=4.

As an example, we may use the optimum set, pc1,p
c
3,p

c
23,p

c
34, which is found in Figure

7.3. For this example, in the look up table, we have address entry values of pc1,p
c
3,p

c
3,p

c
3

in Field I and 0,pc23,0,p
c
34 in Field II respectively.

7.4.2. Decompressor

If the parity of the byte in the compressed bitstream in BRAM is 1, then as many

zeroes are generated as the byte value. For example, pc34 becomes p34.
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Table 7.1. A sample Look Up Table (Is = {1,3,{23},{34}}, ADRp1: address of p
c
1,

ADRp23 : address of p
c
23).

Communication Patterns Field I Field II

1 ADRp1 0

2 ADRp3 ADRp23

3 ADRp3 0

4 ADRp3 ADRp34

7.4.3. Extractor

In a communication instance, in the look up table, if entry II is null, then the

partial bitstream is automatically downloaded to the FPGA after the decompression

process. Otherwise an XOR operation is realized after the decompression between

fields I and II as indicated in Equation 7.2. For example, for the 4th communication

pattern we have to obtain the p4, 4th row in Table 7.1. p4 is extracted by applying an

XOR operation to p2 and p24: p4 = p2 ⊕ p24.

The performance comparison of PCAP, cPCAP and c2PCAP core engines is given

in Section 11.3 of Chapter 11. There, the choice of smallest partial bitstream sets is

summarized in Table 11.3.
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8. MAPPING, ROUTING PROBLEMS FOR NOC AND

RECONFIGURABLE INTERCONNECTS

In the last decade, IC manufacturers have been trying to find new ways of push-

ing limits of the performance. Since it was getting more and more difficult to make

single core clock frequencies higher, technology trend started to shift using multi-core

architectures at the beginning of 2000s. For the time being, reputable processor man-

ufacturers such as Intel, AMD have offered to their customers 4-cores, 6-cores single

chip processors. Even more, they offer two or more single chip multi-core proces-

sors to consumers. In addition to these, many new applications are multi-threaded

and give better performances on multi-core architectures compared to their single-core

counterparts. Moreover, parallelism is everywhere; the most of computation intensive

applications are running on embedded multi-core architectures. However, when the

application cannot be parallelized enough, or the application is not parallel by it’s

nature, it may give worse performance on a multi-core architecture. On a multi-core

architecture, there are several smaller cores which run mostly lower frequencies. Hence,

assigning a single-thread application to a multi-core architecture gives not good per-

formance as on a high-clocked single core architecture. In addition to these, increasing

the number of cores on multi-core architecture leads to an increase in the number of

messages communicated between them. This may end up with a reduced performance

and increased energy consumption. For that reason, the way of mapping application

nodes on a regular or custom multi-core architecture plays an important role in the

system performance. As well as the mapping algorithm, the routing algorithm has a

considerable impact on the performance of communication network between cores.

Most of the applications on multi-core SoCs have non-uniform communication

traffic patterns and they can be predicted statically [1]. In addition to this, most

of the multi-core SoC applications do not have many different communication flows

(number of edges in task graphs) and each of these cores mostly communicates with

a few of other cores. Usually, the traffic flow of these applications is already known
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beforehand [17].

As already mentioned previously (see Chapter 1), NoCs propose an encouraging

solution for the communication problem in multi-core embedded systems. However,

there are several issues, which affect the performance of NoC designs in terms of speed,

area and power consumption. Hence, NoC designers must spent their times to solve

these issues before their designs. The most important of these parameters can be

summarized as follows:

• network topology

• mapping algorithm

• routing algorithm

• switching method

• router architecture

• link bandwidth

The most important of these parameters is the network topology [52]. There

are several network topologies for NoCs. Some of them are 2-D mesh, torus, octagon,

fat tree, butterfly and etc. As a result, the network topology, mapping of cores onto

the target architecture and also routing have significant impact on the overall system

performance. Hence, we focus on mapping and routing algorithms on regular 2-D mesh

NoC architectures, which are mostly preferred in multi-core embedded SoCs.

In this part of the thesis, three different approaches for task to core mapping,

routing for multi core architectures are examined. Here, we mostly focus on the network

architectures such as NoC and reconfigurable interconnects for embedded systems.

In the first chapter of this part, we propose a mapping algorithm called Particle

Filter Mapping (PFMAP) [7]; PFMAP is able to map task nodes onto the cores of

tile-based NoC architectures such as regular, irregular and custom 2-D or 3-D topolo-

gies. PFMAP is inspired from systematic resampling algorithm for particle filters, in

which all particles can run parallel and independently from each other. Based upon
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the experimental results from applying PFMAP for various real life and synthetic ap-

plications onto the different topologies and architectures, the performance of the 2-D

mesh architectures in terms of communication cost increased up to by 51% for irregu-

lar topologies, up to by 31% for custom architectures. Similarly, total travel distance

obtained by PFMAP is reduced up to by 45% for custom 2-D Mesh architectures. In

addition to these, average clock cycles per flit and total network power are reduced by

up to 17% and 15% for regular 2-D mesh architectures respectively. Finally, commu-

nication cost is diminished by up to 34% for 3-D regular NoC architectures.

Afterwards, we propose a routing algorithm based on particle filtering algorithm.

We call this approach as PFROUT (Particle Filter Routing). PFROUT is developed on

the basis of PFMAP, it extends the mapping capabilities of PFMAP by also applying

routing at the time of mapping. Likewise PFMAP, PFROUT also exploits systematic

resampling algorithm for particle filters. In addition to these, PFROUT uses wave-

front algorithm, and Dijkstra’s shortest path in order to find a better routing for a

given application on a network.

To deal with the communication bottleneck of multiprocessor systems, several

communication architectures have been proposed in the last decade. Yet, none of them

has demonstrated the performance of the direct connections between two communicat-

ing units as no additional components are required for mastering the communication.

In Chapter 11, we propose dynamically reconfigurable point-to-point (DRP2P) inter-

connects for setting up direct connection between two communicating units before the

communication starts. While PFMAP and PFROUT are developed for general NoC

communication architectures, DRP2P is developed for custom architectures. Our most

efficient on-chip self-reconfiguration core, c2PCAP core is also used for the run-time

reconfiguration of DRP2P interconnects.

8.1. Related Works on NoC Mapping Problem

A vast amount of methods have been proposed to solve mapping problem. In

PMAP [53], two-phase mapping algorithm for placing clusters onto processors are used.



57

In NMAP [54], Dijkstra’s shortest path on quadrant graph is applied to solve mapping

problem. Both NMAP and PMAP are fast heuristic methods based on the approach

of placing the most communicating nodes neighbour to each other by mapping heavy

weight nodes at first. GMAP [55] is a greedy algorithm which uses n-ary search tree.

The final configurations are given in the leaf nodes of their search tree. Although

this algorithm uses branch-and-bound, space complexity of this work is in the fac-

torial range. SUNMAP [56] extends NMAP to support new NoC topologies such as

torus, hypercube. In CGMAP [57] a genetic algorithm using chaotic systems is pre-

sented. In Onyx [58] and Crinkle [59], priority lists are utilized. In [60], an Optimized

Simulated Annealing (OSA) approach is proposed and tested on various task graphs.

Two different algorithms, named A3MAP-GA and A3MAP-SR, have been presented

in A3MAP [5,6]. A3MAP-GA is a genetic algorithm, while A3MAP-SR is a successive

relaxation algorithm. There is an intensive survey on application mapping strategies

for NoC design [61]. In this work, besides giving classification of mapping algorithms,

communication cost of some benchmark applications are compared for various known

algorithms. There are also studies trying to find optimum solution of the mapping

problem by using Integer Linear Programming (ILP) [62]. Since the mapping problem

is intractable, it is not possible to find a solution for medium and large size problems

using ILP. In LMAP [63], Kernighan-Lin based partitioning is used to solve the map-

ping problem for regular architectures. In PSMAP [64], authors propose particle swarm

optimization. Similar to [63], the scalability of this algorithm is also ambiguous, since

it gives only a few sample applications mapped on a 2-D regular mesh architecture.

In most of these previous studies, video applications such as Video Object Plane

Decoder (VOPD), MPEG4, and high-end video applications such as Picture in Picture

(PIP), Multi Window Application (MWA), MWA with Graphics (MWAG), Dual Screen

Display (DSD), Multi-Media System (MMS) including H263 Dec. and Enc., MP3 Dec.

and Enc. are used. In addition to them, Embedded System Synthesis Benchmarks

Suite (E3S) [65] and for synthetic task graphs Task Graphs for Free (TGFF) [2] are

used in most of these studies.

Most studies are heuristic due to complexity. In most of these algorithms, for a
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fixed problem size, the running time of the algorithms are fixed. However, in PFMAP,

running time of the algorithm depends on the user. User can set a desired time to

finish the algorithm. In PFMAP, as the number of samples and re-sampling iterations

to generate new samples become larger, the solution approaches the optimal Bayesian

estimate. In addition, in PFMAP, particles representing a configuration can run fully in

parallel. Thus, PFMAP is very suitable for current and next generation multi-threaded

or real parallel platforms such as multi-core, GPU and VPU.

8.2. Related Works for NoC Routing Problem

Traditionally, two types of NoCs have been proposed in the literature: packet-

switched and circuit-switched. The data transfer time is much shorter in circuit-

switched NoCs than it is in packet-switched NoCs, because a dedicated path between

two nodes is established before communication takes place. However, the circuit set-up

time introduces additional latency on the overall communication. Besides, the dedi-

cated communication path might make other nodes wait for a communication channel.

The packet-switched NoC solves this problem by limiting the size of data traveling in

the NoC to the size of a packet. Yet, this type of NoCs suffer from not only process

time for packetization of data, header processing or buffering but also communication

time overhead due to congestion control [12].

Recently, methods that by-pass some of the routers are introduced so as to reduce

the communication latency due to routers. In [1], authors propose a hybrid architecture,

where they use simple switch boxes bypassing routers all the way. As the configuration

switches are simpler than routers, they try to route communication paths through

switches by minimizing the number of routers used. In PNoC [12] and DyNoC [13],

modules are placed and removed dynamically. Here unused routers are reused for

computing purposes. Topology switches are first introduced in ReNoC [14] where

hybrid topologies can be setup by taking application specifications into account. In [15,

17,18], it is shown that by-pass links can also be introduced dynamically to the system.

Similarly, in Reconfig-Net [16], the wires to and from the routers are dynamically added

or removed. The number of routers is reduced by static analysis. In [66] these wires
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Table 8.1. Comparison of latest NoC approaches.

Network Switching Device Topology Routing

Alg.

Goal Novelty Application

AppAw

[1]

Packet +

Circuit

ASIC 2D-

Mesh

Wormhole

switch-

ing

Bypass the

routers, use

configuration

switches

Use simple

switch boxes

between

routers

VOPD, MWD,

MP3 enc./dec.,

H.263 enc./dec.

PNoC

[12]

Circuit FPGA Custom Det. Reduce Nr. of

Routers com-

pared to regular

NoCs

Place mod-

ules that

communicate

frequently

in the same

subnet.

Image Binarisa-

tion

DyNoC

[13]

Packet FPGA 2D-

Mesh

Adapted

XY

(S-XY,

SV-XY,

SH-XY)

Direct comm.

paths btw.

neighbor PEs

Use routers

as reusable

elements, i.e.

also for logic

Color Gen-

erator and

Traffic Light

Controller

ReNoC

[14]

Packet +

Circuit

ASIC Custom Topology

Switch+

Router

Reduce Nr. of

Routers

Wrapping

routers with

topology

switches

VOPD

Skip-

links

[15]

Packet - 2D-

Mesh

Adaptive Jumping or

skipping over

the intermedi-

ate router

Connecting

skip links

together:

skip chains.

-

Reconfig-

Net [16]

- FPGA Custom - Reduce Nr. of

Routers

Reconfigurable

interconnects

btw. routers

VOPD

VIP

[17]

Packet ASIC 2D-

Mesh

Wormhole

switch-

ing

Bypass the

router pipeline

stages with VCs

Use dedi-

cated P2P

links.

VOPD,

MWD,H.263

enc., GSM,

MP3 enc./dec.

RecoNoC

[18]

Packet

+ P2P

Simplex

Links

FPGA 2D-

Mesh

Adaptive

Worm-

hole

Bypass routers

using shortcuts

Create short-

cuts btw.

distant

nodes

-

[66] Packet FPGA 2D-

Mesh

Any

deadlock-

free alg.

Reducing the

average dis-

tance between

remote nodes

Introducing

long-range

links

Auto industry,

Telecom and

synthetic

[67] Packet FPGA 2D-

Mesh

Wormhole Using different

architectures

for data com-

munication and

synchronization

Hybrid archi-

tecture for

multicast,

broadcast

and larger

messages

Jacobi Algo-

rithm

[68] Packet +

Circuit

Sim.

Env.

2D-

Mesh

Wormhole Avoid router la-

tency

Proposing

virtual point

to point links

SPLASH-2 ap-

plications [69]

[70] Packet +

Circuit

Sim.

Env.

2D-

Mesh

XY-

Routing

Exploit advan-

tages of both

packet and cir-

cuit switching

Dynamically

switching be-

tween packet

and circuit

switching

SPLASH-2 ap-

plications [69]
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are static. In [67], three different communication architectures are utilized on the same

SoC and one of these architectures is selected during run-time. This is accomplished

by a switches and an adaptive look-up table at each router.

In addition to the abovementioned studies, there are newly proposed works on

NoC architectures. In [68], authors propose a NoC architecture, where both packet

switching and circuit switching combined in way that reduces overall packet latency.

They propose virtual point-to-point (VIP) links, which are designed on the top of a

packet switched network architecture. In order to avoid router’s latencies they try to

use VIPs all the way. If this is not possible they switch to the packet switched network.

Similarly in [70], authors propose again a hybrid network topology, where packets starts

to use at first packet switched network, and continues with circuit switched network,

whenever such a circuit can be established. All above mentioned NoC approaches are

summarized in Table 8.1.

As routers have a huge impact on the NoC performance and in order to reduce

congestion delays, new router architectures are proposed recently [71,72]. As travelling

packets through NoC are control and data packets, authors in [73], distinguish these

packets by introducing a new router architecture. authors propose that most of the

packets are the control packets and they can be sent to the destination via virtual

channels.

Routers have a major effect on the occupied area and system power consumption.

To avoid the drawbacks of routers, it is valuable to implement a routerless NoC-like

system. From Table 8.1, it is obvious that almost all studies try to suppress the draw-

backs of routers used in both packet and circuit switched networks. To achieve this,

either the number of routers is reduced or routing through routers is minimized. This

is done by either developing simpler router architectures or adding additional config-

uration switches or using dedicated P2P links for neighbour/long distant PEs and so

on. Hence, PFROUT tries to minimize the congestion and contention delays for a

target NoC architecture by minimizing the number of routers used on the communica-

tion architecture. Target architecture for PFROUT has additional simple configuration
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switches in addition to the routers which are available on a conventional 2-D mesh NoC

architecture. The main objective of PFROUT algorithm is routing communication re-

quests through these simple switches instead of through power and area hungry, huge

routers.

8.3. Related Works for Reconfigurable Interconnects

As traditional NoCs suffer from communication latency, area overhead and power

consumption introduced to the system by the routers [17], adaptive, programmable,

reconfigurable NoC architectures have been proposed in the literature. Adaptive look-

up tables are proposed in PNoC [12]. In RecoNoC [18], parameterized look-up tables

are used to reduce reconfiguration time. In PNoC, modules are placed and removed

dynamically as it is the case in DyNoC [13] where the unused routers are reused for

computing purposes. Some of these studies remain at simulation level [15] , but there

exist implementations either as an ASIC [14] or on a Xilinx FPGA [12,13,16,18,66,67],

or a Xilinx FPGA-based platform [17].

Xilinx FPGAs are well-known for the dynamic partial reconfiguration availabil-

ity for almost every unit in the FPGA [10]. However, very few of the NoC imple-

mentations on the FPGAs utilize this property [12, 13, 16]. In these studies, power

consumption and latency due to reconfiguration have not been reported. It is also

ambiguous how reconfiguration is triggered and carried out in these studies. In the

literature, there are agents and methods for dynamic partial reconfiguration, but these

studies do not explain which one is utilized. Other run-time adaptive approaches

propose new reconfiguration or adaptation methods based on run-time monitoring of

the application. However, they do not explicitly mention how long their proposed

reconfiguration/adaptation/monitoring scheme will take or how much power it will

consume. The numerical time values for the proposed reconfiguration methods are not

very promising. For example, TMAP [74] method adopted in RecoNoC requires 215

msec to update 8-bit coefficients of a 32-tap FIR. This is a quite long time for setting

up communication architecture.
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In DRP2P, we reconfigure interconnects between communicating modules for a

given embedded application. The aim in DRP2P interconnects is setting up direct

connections between two communicating units before the communication starts. We

do not use any router for DRP2P. Communication between units is always established

through direct connections. Hence, there is no router drawback for DRP2P architec-

ture. DRP2P interconnects are examined in Chapter 11 in detail.



63

9. PARTICLE FILTERING ALGORITHM FOR NoC

MAPPING PROBLEM

As NoC introduces scalable solution for multi-core architectures, it is a promising

solution for the communication in a multi-core architecture. The first and most im-

portant parameter which affects the performance of NoC communication architecture

is the mapping and placement of task nodes onto that architecture. For that reason,

the way of mapping application nodes on a regular, irregular or custom multi-core

architectures plays an important role in the system performance [75].

Figure 9.1. Task mapping process on a regular 2-D Mesh NoC.

Mapping process can be defined as assigning each task node to an individual core.

Mapping can be divided into two subcategories as static and dynamic with respect

to implementation time. Static mapping is done at compile time, whereas dynamic

mapping runs on the fly and requires more complex components such as observer and

reconfiguration engine. Moreover, dynamic mapping also requires an initial mapping.

Our objective is the static mapping of cores on a regular, irregular and custom 2-D or

3-D mesh architectures by minimizing the communication cost. Static mapping is the

first step to minimize overall packet latency and network power [5, 6, 54]. Hence, the

keyword mapping refers to static mapping in the rest of the thesis.

A sample mapping can be found in Figure 9.1. On the left side of this figure,

Video Object Plane Decoder (VOPD) application task graph [4] is given. Each node



64

in this graph represents a task (T) to be mapped onto a core (C).

A good mapping algorithm may also reduce the average traffic load on routers

by placing most communicating nodes neighbor to each other as much as possible.

Reducing the traffic load of routers may decrease the total area and power consumption

of the system while increasing the operating system frequency (e.g. shortening the

critical path).

The global objective of our PFMAP algorithm is the mapping of cores on a

regular, irregular and custom 2-D or 3-D mesh architecture by minimizing the commu-

nication cost.

In the literature, there are various studies in the field of node to core mapping

of regular NoCs. However, none of these studies utilize particle filtering algorithm to

solve the mapping problem for NoCs, which is an NP-hard problem [61]. Yet, particle

filters are widely used in applications such as positioning, localization, tracking and

navigation in robotics, automotive industry [76–78]. Particle Filtering is a sequential

Monte Carlo technique for the solution of the state estimation problem [79]. The orig-

inal particle filtering algorithm is called Sequential Importance Resampling (SIR) and

used frequently [80]. The main point in particle filtering is representing the required

posterior density function (pdf) by a set of random sample particles with correspond-

ing weights, and to compute the estimates based on these samples and weights. As

the number of samples and resampling iterations to generate new samples become

very large, the solution approaches the optimal Bayesian estimate. There are various

resampling methods for particle filtering algorithm [81]. Systematic resampling algo-

rithm [82] is widely used because it is easy to implement and it outperforms other

resampling approaches in most scenarios. Moreover, in terms of resampling quality,

systematic resampling has the minimal variance [83]. Hence, we have preferred to use

systematic resampling in PFMAP.

PFMAP is very suitable for solving mapping problem for the following reasons:
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• A configuration on any type of regular, irregular and custom 2-D or 3-D NoC

topology can be represented by particles.

• Particles do not require a fixed computation time; instead, accuracy increases

with the available computational resources [77].

• Implementation of particle filters is extremely easy, especially systematic re-

sampling algorithm.

• Particles give much better results than their counterparts in the solution of map-

ping problem in most of the time.

• Particles in PFMAP are totally independent from each other and therefore they

all can run in parallel. Hence, it is easy to implement PFMAP on parallel com-

putational platforms such as multi-thread, GPU and VPU.

9.1. Proposed Algorithm

Two graphs are the inputs to PFMAP. The first one is Task Traffic Graph (TTG),

where the task nodes and the communication flows between them are defined. The sec-

ond graph is Core Traffic Graph (CTG) in which processor or computational cores and

their communication relationships are given. Another input is the topology of the NoC

which is called Router Configuration Topology (RCT). We define configuration as the

placement of cores on tile-based NoC architecture. As an example, the block diagram

of VOPD application is given in Figure 9.2a. Each block in this application can be con-

sidered as a task node. In Figure 9.2b, task graph of VOPD application is given. This

task graph is generated according to the block diagram in Figure 9.2a. Here, weighted

directed edges represent the average communication volume in MBytes/s from one node

to another node. The task graphs used in this thesis characterize the partitioning, task

assignment, scheduling, communication patterns, and task execution time of a given

application [55]. Similarly, Figure 9.2c shows the core graph of target application. In

Figure 9.2d, a solution is found for mapping problem of VOPD application to a 2-D

regular mesh NoC architecture by using NMAP algorithm. Here, rectangular shapes

represent routers, circular shapes represent processor cores attached to routers.

Mathematical formulation of the mapping problem can be given as follows:
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(a) Block Diagram (b) Task Traffic

Graph

(c) Core Traffic

Graph

(d) Mapping with

NMAP [54]

Figure 9.2. VOPD application with 16-cores [4].

Definition 9.1. Task Traffic Graph (TTG) is a directed graph, TTG(N,T) with each

vertex ni ∈ N representing a task node and the directed edge between ni and nj indicated

by fi,j ∈ T, i 6= j represents the traffic flow. The weight of fi,j ∈ T is the traffic amount

from ni to nj and denoted by ti,j. In TTG, |N | represents the number of task nodes,

while |T | is the number of non-zero directed edges between ni and nj, s.t. i 6= j.

|T | ≤ |N | × |N − 1|.

Definition 9.2. Core Traffic Graph (CTG) is a directed graph, CTG(C,T) with each

vertex ci ∈ C representing a processor or a computational core.The directed edge be-

tween ci and cj indicated by li,j ∈ T represents the link between source and destination

nodes. The weight of each link li,j ∈ T is denoted by ti,j representing the traffic amount

on the current link.

One-to-one mapping of the TTG onto the CTG can be defined in Equation 9.1.

map : N 7→ C,∋ map(ni) = ci, ∀ni ∈ N, ∃ci ∈ C (9.1)

We assume that, each single task node ni ∈ N is mapped onto a single processor

or computational core ci ∈ C, on which there is no any other task node nj ∈ N is

mapped yet. Hence, TTG and CTG are identical, i.e. |N | = |C|. In some applications,

however, more than one task node can be mapped to a processor core or in the similar

way, one task can be partitioned into subtasks and these subtasks can be mapped onto
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multiple processor cores. We assume that these operations are carried out prior to

PFMAP.

Definition 9.3. Router Configuration Topology (RCT) is a 2-D mesh NoC topology

with each ordered pair Pr,c ∈ RCT (R,C) representing the physical location of a proces-

sor core attached to a router on the target architecture. R and C indicate the number

of rows and columns in the topology respectively (i.e. R × C is NoC size). In Pr,c, r

and c are the respective horizontal and vertical indices.

One-to-one mapping of the CTG onto the RCT can be defined in Equation 9.2.

map : C 7→ RCT,∋ map(ci) = Pr,c,

∀ci ∈ C, ∃Pr,c ∈ RCT (R,C)
(9.2)

Note that the mapping is valid if the number of cores to be placed (|N |) is less

than or equal to the number of nodes on the target architecture (|R× C|), |N | ≤
|R × C|.

RCT is composed of only routers and there are some limitations for routers in

terms of their number of inputs and outputs: they have only n-bit single input and

single output in one side (North-East-South-West). Each processor or computational

core is attached to a router. Apart from the processor interface, both the maximum

number of inputs and outputs for a router is four.

Definition 9.4. Manhattan Distance (MDist) is the minimum number of hops from

source node ni to destination node nj in RCT. The formula of the MDist for the nodes

Pr1,c1 and Pr2,c2 in RCT is given in Equation 9.3.
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MDist = |r1− r2|+ |c1− c2| (9.3)

The communication cost of a configuration for regular 2-D mesh architectures is

calculated by using MDist between each node pairs. Communication cost for a single

edge (CCse)between Pr1,c1 and Pr2,c2 in a configuration is given in as,

CCse = tPr1,c1,Pr2,c2 ∗MDist(r1, c1, r2, c2) (9.4)

CommCostReg is the total communication cost of a configuration for a regular 2-D

mesh topology as shown in Equation 9.5. Here, R and C indicate number of rows and

columns in the RCT respectively.

CommCostReg =

R
∑

r1=0

C
∑

c1=0

R
∑

r2=0

C
∑

c2=0

CCse(r1, c1, r2, c2) (9.5)

Instead of using MDist, distance value of each computation core pairs for irregular,

custom and 3-D architectures is obtained by utilizing the Dijkstra’s shortest path algo-

rithm [84] in the preprocessing step, where a distance matrix is generated. Then, this

matrix is used as an input to PFMAP. In Figure 9.3, a random processor communica-

tion topology and its corresponding distance matrix are given. Source and destination

processor cores are given in the rows and columns of the distance matrix. For example,

the distance from source node P6 (in row P6) to destination node P5 (in column P5) is

given as thirteen. The path from P6 to P5 is as follows: P6− > P2− > P3− > P7− >

P11− > P15− > P14− > P13− > P12− > P8− > P4− > P0− > P1− > P5.

In Equation 9.6, CommCostIrreg is the total communication cost of a configu-

ration for an irregular, custom 2-D mesh or regular, irregular and custom 3-D mesh

topologies.
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(a) An irregular processor topology (b) Distance matrix

Figure 9.3. An irregular processor communication topology and it’s distance matrix.

CommCostIrreg =
E
∑

i=0

E
∑

j=0

ti,j ∗ disti,j (9.6)

where disti,j is the Dijkstra’s shortest path.

Definition 9.5. CostLowerBound is the minimum communication cost that can be

achieved in a given configuration. CostLowerBound calculation is given in Equation

9.7.

CostLowerBound =

E
∑

i=0

E
∑

j=0

ti,j (9.7)

The main part of our PFMAP mapping algorithm is given in Figure 9.4. In

this algorithm each particle represents a mapping configuration. The algorithm gener-

ates PN random configurations in the first iteration (lines 4-6). The related function

(randomConf(particlesj)) is an implementation of Fisher-Yates Shuffle [85], which is

used for the sake of performance. With this function, we randomly place the processor

or computational cores on mesh NoC architecture initially for each configuration. Here,

PN is the number of particles and IT is the number of iterations, that we define before

the beginning of running our algorithm. It should be noted that the running time of
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our algorithm is proportional to the PN and IT .

Input: Set of cores and nodes, TTG, CTG, RCT(R,C)

Output: Mapping of cores to nodes

1: BestF itness = −1
2: for i = 0 to IT do

3: for j = 0 to PN do

4: if (i == 0) then

5: randomConf(particlesj) ;

6: else

7: randomNodeSwap(particlesj) ;

8: end if

9: particleF itnessj ⇐ CalcF itness(particlesj) ;

10: CurrF itness⇐ particleF itnessj ;

11: if CurrF itness > BestF itness then

12: BestF itness⇐ CurrF itness

13: BestConf ⇐ particlesj

14: BestCost⇐ CommCost for particlesj

15: end if

16: end for

17: sysResamp(particleF itnesses, chosens, PN)

18: chooseResampleds(particles, chosens, PN)

19: end for

Figure 9.4. Main part of configuration mapping algorithm.

In the first iteration, we calculate the fitness for each randomly generated configu-

ration (lines 9-10). The calculation of fitness function for mapping is given in Equation

9.8. Here, CommCost is identical to CommCostReg if the architecture is regular 2-D

mesh, otherwise (i.e. architecture is irregular, custom 2-D mesh or regular, irregular,

custom 3-D mesh) it is equal to CommCostIrreg.

Fitnessmapping = 1/CommCost (9.8)
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According to initial configurations, we calculate the fitness value for each configura-

tion. Among these configurations, the largest fitness value is set as the minimum

BestF itness (lines 11-15).

Input: Set of cores and nodes, TTG, CTG, RCT

Output: Mapping of cores to nodes

1: Function randomConf(RCT(R,C))

2: for i = 0 to N do

3: tempArri ⇐ i

4: end for

5: numWaitingChips⇐ N

6: for i = 0 to ROW do

7: for j = 0 to COL do

8: randInt⇐MSTrand(0, numWaitingChips)

9: RCTi,j = tempArrrandInt

10: tempArrrandInt = tempArr−−numWaitingChips

11: end for

12: end for

13: RETURN modifiedRCT

14: EndFunction

Figure 9.5. Random configuration function.

After generating initial configurations and finding the BestFitness, we re-sample

these configurations in each iteration (lines 17-18). Sampling from the distribution

and checking those samples with largest fitness values can be utilized for a low cost

configuration selection algorithm. In the remaining IT-1 iterations, we apply pairwise

swap among randomly selected nodes (line-7). At the initial steps, the algorithm might

not represent the fitness function. However after a burn-in period, it starts to converge

to the distribution. The burn-in period is directly proportional to the application and

NoC architecture size.

In Figure 9.5, the generation of random configurations (i.e. particles) is given for

the first iteration of the Figure 9.4. In this algorithm Fisher-Yates Shuffle [85] is used
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for the sake of performance.

In Figure 9.6, swapping of distinct node pairs on RCT is given.

For all random function generations (lines 5 and 7), we used thread-safe SIMD-

oriented Fast Mersenne Twister (MT) Pseudo RandomNumber Generator (PRNG) [86]

because of the following reasons:

• It has larger period (up to 2216091 − 1) than the original MT (219937 − 1) [86].

• It is roughly twice faster than the original MT, and has a better equidistribution

property, as well as a quicker recovery from zero-excess initial state [86].

• It is faster than other statistically reasonable generators (very useful when huge

quantities of random numbers are required) [87].

• Original MT is proven to be equidistributed (up to 623-dimensional) for 32-bit

values. It passes many stringent statistical tests, including the diehard test of G.

Marsaglia and the load test of P. Hellekalek and S. Wegenkittl [88].

• It is very common; it has strong support from the people knowledgeable in the

same field.

Input: RCT(R,C)

Output: RCT(R,C) with random two nodes swapped

1: Function randomNodeSwap (RCT(R,C))

2: do

3: {
4: pick first node from RCT randomly

5: pick second node from RCT randomly

6: }while(firstnode 6= secondnode);

7: swap(firstnode, secondnode) in RCT

8: save RCT as modifiedRCT

9: RETURN modifiedRCT

10: EndFunction

Figure 9.6. Random swap node pair function.
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Input: Particle fitnesses and set of particles

Output: Set of re-sampled particles

1: Function sysResamp(particleFitnesses, particles)

2: fitnessSum = 0

3: curF itnessSum = 0

4: uni = 0

5: for i = 0 to P do

6: fitnessSum+ = particleF itnessesi

7: end for

8: uni = ([0..1] × (fitnessSum/P ))

9: k = −1
10: for j = 0 to P do

11: while curF itnessSum < uni and k < P − 1 do

12: k ++

13: curF itnessSum+ = particleF itnessesk

14: end while

15: resampledParticlesj ← k

16: uni+ = (fitnessSum/P )

17: end for

18: RETURN resampledParticles

19: EndFunction

Figure 9.7. Re-sample particles systematically.
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In Figure 9.7, method for re-sampling of particles is given. Here, configurations

can be considered as a probability distribution where each configuration’s probability

is given by Equation 9.8 So, as the communication cost of a configuration increases,

the probability of its selection decreases for the next iteration.

In systematic re-sampling, new configurations (i.e. particles) are derived from the

previous ones. Number of configurations at the input and output are the same. While

the configurations with high CommCost values are mostly discarded, each configuration

with lower CommCost value is reproduced a few times. Thus, at the end of re-sampling,

probably there will not be only a single instance of a configuration with low CommCost.

For re-sampling step, fitness of each configuration is calculated. Then, the fitness

values are located in a one-dimensional array. The total size of this array is the sum

of fitness values (fitnessSum in line 6 of Figure 9.7) of P configurations. Here, the

size of occupied area of each configuration is proportional to its size. Assume that we

have three configurations C1, C2, C3 and they have CommCost values as 1, 0.2, and 0.5

respectively. So, the corresponding fitness values are 1, 5 and 2 respectively according

to Equation 9.8. Residing of these configurations in the array is illustrated in Figure

9.8.

In our re-sampling scheme, we define a comb with P teeth, which selects (i.e. re-

samples) the new configurations from the array. For our example, our comb has three

teeth as in Figure 9.8. Teeth of comb select the appropriate configurations. Here, the

length of comb is shorter than the length of array and the interval between teeth are

equal. For P configurations, the length of comb can be given as:

CombLength =

∑|P |
i=1

pconfigurationi

P
× (P − 1) (9.9)

For our example, the length of comb, CombLength = [(1 + 5 + 2)/3] ∗ 2 = 16/3 and

array length is eight. To locate the comb over the array, we generate a number from the
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uniform distribution on the interval [0, ArrayLength − CombLength]. This number,

uni, is the leftmost tooth of the comb (line 8). For our example, this interval is [0, 8/3]

and assume that uni is 1.32. The process of locating the comb over the array and

selecting new candidates are done in lines 10-17 and shown in Figure 9.8. In lines 11-14,

decision about the current configuration is given. If the sum of cumulative sum of fitness

values (curF itnessSum) and fitness of the current configuration (particleF itnessesk)

is less than current value of uni (i.e. k ∗ (fitnessSum/P )), k is incremented. Thus,

the kth particle is not re-sampled; instead, (k − 1)th particle is reproduced.

Figure 9.8. Residing of three configurations on an array for re-sampling step by using

comb.

Our re-sampling method generates only a single real number. Hence, in the next

iteration, the probability of having better configurations is increased while still keeping

some of the configurations with higher costs as well.

9.2. Case Studies

We implement our PFMAP algorithm in C++ with OPENMP library [89]. All

tests have been carried out on a 32-bit Windows-7 PC with a i5 CPU-750@2.67GHz

and 3-GB RAM. We performed our experiments with various video applications such

as VOPD, MPEG4-Decoder, MWD, MMS-Suite (H263-decoder, H263-Encoder, MP3-

Decoder, MP3-encoder), E3S Benchmark Suite [65] (Automotive/ Industrial (AI), Con-

sumer, Telecommunications). Additionally, we have generated various synthetic task

graphs using TGFF [2]. These applications are mapped onto regular, irregular and

custom 2-D, 3-D NoC architectures.

For the simulation purposes, we have used NIRGAMNoC simulator [90]. NIRGAM

is a SystemC based cycle-accurate NoC simulator for 2-D regular NoC architectures.

Yet, it does not support multi-casting. Moreover, user cannot give the mapping as
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Table 9.1. Algorithm running time and communication cost results of PFMAP on

different applications.

Nr. Of Tests= 100

Application
IT 10 10 100 100 1000 1000 10000

PN 10 100 100 1000 1000 10000 10000

H263 dec (V=12, E=14)

LB: 213175 OP: 213372

Run T. [ms] 1.21 1.41 13.35 28.53 295 2036 21002

Best C. 218378 213372 213372 213372 213372 213372 213372

Avg C. 243168 219494 213785 213464 213444 213374 213372

W. C. 295814 228920 216991 213660 213660 213660 213372

H263 enc (V=12, E=11)

LB: 403817 OP: 404014

Run T. [ms] 1.19 1.42 13.14 - - - -

Best C. 406306 404014 404014 - - - -

Avg C. 523072 433431 404014 - - - -

W. C. 664716 522249 404014 - - - -

MP3 dec (V=12, E=4)

LB: 42420 OP: 42420

Run T. [ms] 1.32 1.55 - - - - -

Best C. 42420 42420 - - - - -

Avg C. 44197 42420 - - - - -

W. C. 56550 42420 - - - - -

MP3 enc (V=12, E=8)

LB: 70679 OP: 77740

Run T. [ms] 1.20 1.33 13.39 - - - -

Best C. 77740 77740 77740 - - - -

Avg C. 79557 77780 77740 - - - -

W. C. 100268 78380 77740 - - - -

MWD (V=12, E=12)

LB: 1120 OP: 1216

Run T. [ms] 1.25 1.37 13.59 31.12 316.22 1980 -

Best C. 1408 1312 1216 1216 1216 1216 -

Avg C. 1800 1558 1364 1264 1224 1216 -

W. C. 2080 1792 1504 1344 1248 1216 -

MPEG4 Dec (V=12,

E=21) LB: 3466 OP:

3633

Run T. [ms] 1.22 1.36 13.42 29.19 297 1995 -

Best C. 4272.5 3752 3633 3633 3633 3633 -

Avg C. 4900.7 4030.1 3693.3 3643.9 3637.6 3633 -

W. C. 5275.5 4602 3772.5 3672 3672 3633 -

VOPD (V=16, E=21)

LB: 3731 OP: 4119

Run T. [ms] 1.23 1.47 14.51 36.07 329 2516 25033

Best C. 4950 4561 4167 4125 4119 4119 4119

Avg C. 6608 5583 4670 4225 4136 4129 4124

W. C. 7946 6321 5178 4469 4157 4135 4135
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Table 9.2. Algorithm running time and communication cost results of various studies.

Application
Algorithms

NMAP LMAP PSMAP ILP PFMAP

MPEG4(4x4)
Run T. [s] 0.024 0.040 0.040 21.53 0.005

Comm C. 3672 4006 3567 3567 3567

MWD(4x4)
Run T. [s] 0.016 0.030 0.020 200.5 0.015

Comm C. 1184 1248 1120 1120 1120

VOPD(4x4)
Run T. [s] 0.024 0.040 0.260 21.53 0.329

Comm C. 4265 4189 4119 4119 4119

an input to the system. Hence, we modified NIRGAM to support these features. In

NIRGAM, we selected the simulation frequency as 1GHz and set simulation time to

1ms. All other settings are left at their default values. It is enough to use hop count

(CommCost) in order to evaluate quality of a mapping in terms of consumed en-

ergy [91] for regular architectures. The average energy consumption of sending one

bit of data from one node (ti) to another one (tj) is determined by the Manhattan

Distance for regular architectures:

Eti,ti
bit = nhops ×ESbit

+ (nhops − 1)× ELbit
(9.10)

In Equation 9.10, nhops is the number of routers the bit traverses from tile ti to tj .

ESbit
and and ELbit

are the energy consumed by the switches and links between tiles,

respectively. Since ESbit
and ELbit

are dependent on NoC architecture, nhops determines

the energy consumption for regular architectures and it is directly related to mapping

process.

9.2.1. 2-D Regular Mesh Architectures

In Table 9.1, various applications are mapped with PFMAP onto regular 2-D

Mesh architectures. The results show both running time of our PFMAP algorithm and
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the communication cost of each scenario for different number of iterations (IT ) and

particles (PN). In Table 9.1 and in the following illustrations, while V represents the

number of task nodes, E shows the number of edges. For each application, the lower

bound communication cost (LB) is the CostLowerBound in Equation 9.7. However,

sometimes it is impossible to reside all communicating task nodes as neighbor to each

other. Hence optimum solutions (OP ) need not be equal to lower bound cost values.

(a) (b) (c)

(d) (e) (f)

Figure 9.9. Irregular mesh architectures [5].

The halting methodology of our algorithm is as follows: if the resulting commu-

nication costs in the best case and worst case are close to the value of average case, we

terminate the execution. In Table 9.1, running time (Run T.) of our PFMAP algorithm

is given in milliseconds. The best (Best C.), worst (W. C.) and average case (Avg.

C.) communication costs are also presented. We tested each benchmark 100 times for

given IT and PN values. Generally, as IT and PN increase, we find better solutions.

However, for some applications (i.e for small and simple applications) it does not make

any sense to run it for large values of IT and PN . For example, for the H263 encoder

application, we found the solution for IT = 100 and PN = 100 in 1.42 milliseconds.

Hence, there is no need to run this application for larger IT and PN values anymore.

For the medium size problems (e.g. VOPD with sixteen cores on 4x4 2-D mesh NoC),

it is not easy to apply our halting methodology. For that reason, after some burn-in
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period (if the resulting worst case solution is near to the best solution), we stop the

running of our PFMAP algorithm. In such a situation, a designer can set a threshold

value (e.g. 105% of the best communication cost) and check the average and worst

values. If they are less than the threshold value, the algorithm might be halted.

We also compared the communication cost and running time of PFMAP algo-

rithm with NMAP, LMAP, PSMAP and ILP studies in Table 9.2. In this table, ILP

shows the optimum communication cost values and it is remarkable that PFMAP also

finds optimum results for given applications in a short period of time. Although NMAP

and LMAP are fast algorithms, they do not find optimum results for given medium

size applications. In average, PFMAP seems to be the best algorithm among the other

ones in terms of both communication cost and algorithm running time.

We have tested the performance of PFMAP on a fixed, 4x4 2-D regular mesh

network with increasing communication demand between cores. To implement this,

we have generated five task graphs with fixed number of vertices but different num-

ber of communication demands by using TGFF. In Figure 9.10, we see that PFMAP

outperforms NMAP when communication demand increases.
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Figure 9.10. Communication cost comparison of PFMAP and NMAP on a 2-D NoC

with fixed size (4x4) with increasing communication demand.

Running times of NMAP and PFMAP algorithms for the networks in Figure 9.10
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Figure 9.11. Algorithm running time of NMAP and PFMAP on a 2-D NoC with fixed

size (4x4) with increasing communication demand (IT=10, PN=10 for PFMAP).

are given in Figure 9.11. Except the simplest one (i.e. graph with 14 edges), PFMAP

finds a better result than NMAP with a little time overhead.

9.2.2. 2-D Irregular and Custom Mesh Architectures

(a) (b) (c)

(d) (e) (f)

Figure 9.12. Irregular mesh architectures [6].

We have compared PFMAP with other studies such as NMAP, CMAP, A3MAP-

SR [6] and A3MAP-GA [6] for VOPD application on some irregular 2-D mesh architec-

tures given in Figure 9.12. Here, solid lines represent links with full bandwidth, while
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dashed lines show the links width half bandwidth. PFMAP tries to place heavy weight

communications onto the links with full bandwidth and the remaining smaller weight

edges onto the links with half bandwidth irregular 2-D mesh topologies. As it is seen

in Table 9.3, although PFMAP finds a worse communication cost in a few scenarios

(see rows 7-8), it gives much better results than all it’s counterparts in average for each

scenario. Even though the PFMAP’s resampling algorithm works very well, it might

give good results only for large number of IT and PN values for a given application.

We fixed both IT and PN values to 1000 for this set of experiments. If we increase

these values, the PFMAP algorithm will probably find better results with the time.

(a) (b)

(c) (d)

Figure 9.13. Custom mesh architectures [6].

We have also compared PFMAP with other studies for VOPD application on some

custom architectures given in Figure 9.13. Comparison results are given in Tables 9.4

and 9.5. Communication cost of PFMAP is much better than other algorithms in

average in all scenarios. Total travel distance of PFMAP might be worse than the

other algorithms for a few scenarios (row 4 in Table 9.5) due to fixed IT and PN

values.
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Table 9.3. Communication cost of VOPD application on six different irregular mesh

architectures (4x4).

Total Communication Cost

Network NMAP CMAP A3MAP-SR A3MAP-GA PFMAP Imp. Over

NMAP(%)

Imp. Over

CMAP(%)

Imp.Over

A3MAP-

SR(%)

Imp.Over

A3MAP-

GA(%)

Figure 9.12a 4215 4911 4205 4189 4189 +0.62 +14.70 +0.38 0.00

Figure 9.12b 8704 6544 5820 5345 4253 +51.14 +35.01 +26.92 +20.43

Figure 9.12c 6405 7194 6185 5257 4900 +23.50 +31.89 +20.78 +6.79

Figure 9.12d 4923 5507 4374 4199 4199 +14.71 +23.75 +4.00 0.00

Figure 9.12e 4950 4259 4191 4189 4281 +13.52 -0.52 -2.15 -2.20

Figure 9.12f 7424 6497 4832 4081 4351 +41.39 +33.03 +9.95 -6.62

Average 6104 5819 4935 4543 4362 +24.14 +22.98 +9.98 +3.07

Ratio 1 0.953 0.808 0.744 0.715

Table 9.4. Communication Cost of VOPD application on four different custom mesh

architectures (4x4).

Total communication cost

Network NMAP CMAP A3MAP-SR A3MAP-GA PFMAP Imp. Over

NMAP(%)

Imp. Over

CMAP(%)

Imp.Over

A3MAP-

SR(%)

Imp.Over

A3MAP-

GA(%)

Figure 9.13a 4488 4752 4531 4087 4076 +9.18 +14.23 +10.04 +0.27

Figure 9.13b 4264 4119 4248 4199 3859 +9.49 +6.31 +9.16 +8.09

Figure 9.13c 6296 5598 5867 5150 4290 +31.86 +23.37 +26.88 +16.70

Figure 9.13d 5524 5735 4263 4263 4236 +23.32 +26.14 +0.63 +0.63

Average 5143 5051 4727 4425 4115 +18.46 +17.51 +11.68 +6.42

Ratio 1.000 0.982 0.919 0.860 0.800

Table 9.5. Total travel distance (wirelength) by all packets.

Total travel distance

Network NMAP CMAP A3MAP-SR A3MAP-GA PFMAP Imp. Over

NMAP(%)

Imp. Over

CMAP(%)

Imp.Over

A3MAP-

SR(%)

Imp.Over

A3MAP-

GA(%)

Figure 9.13a 5879 6300 5332 4543 4108 +30.12 +34.79 +22.96 +9.58

Figure 9.13b 5505 4135 5049 4215 4486 +18.51 -8.48 +11.15 -6.42

Figure 9.13c 7835 6842 7434 5613 4862 +37.95 +28.94 +34,60 +13.38

Figure 9.13d 9196 9627 5170 5170 4971 +45.94 +48.36 +3.85 +3.85

Average 7104 6726 5746 4885 4606 +35.16 +31.52 +19.84 +5.71

Ratio 1.000 0.947 0.809 0.688 0.648
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(a) Irregular mesh 3x3 (b) Custom with 11-cores

Figure 9.14. Energy, latency representation of irregular and custom architectures.

Hop count may not be sufficient to qualify the mapping quality of irregular and

custom architectures [92]. Mapping quality also depends on the communication energy

and latency for such architectures. To examine this issue, an irregular 3x3 mesh archi-

tecture and a custom 11-core architecture are given in Figure 9.14. Number pairs on

the edges denote relative communication energy and latency of each link respectively.

The communication latency from Core i to Core j is denoted by li,j and obtained by

the sum of relative communication latencies on the shortest path from Core i to Core

j. The total communication latency (LComm) for an application mapping is given in

Equation 9.11.

LComm =

E
∑

i=0

E
∑

j=0

ti,j ∗ li,j (9.11)

Similarly, the communication energy from Core i to Core j is denoted by ei,j and

obtained by the sum of relative communication energies on the shortest path from Core

i to Core j. The total communication energy (EComm) for an application mapping can

be calculated as in Equation 9.12.
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EComm =
E
∑

i=0

E
∑

j=0

ti,j ∗ ei,j (9.12)

In this set of experiment, various benchmarks with different sizes generated by

TGFF are mapped onto miscellaneous irregular and custom NoC architectures similar

to Figure 9.14, but with different dimensions. Table 9.6 shows the communication

energy and communication latency. Here, PFMAP gives always much better results

than NMAP in terms of both communication latency and energy with a small running

time overhead.

Table 9.6. Communication energy and latency comparison of NMAP and PFMAP on

both irregular and custom architectures.

Network Benchmark
NMAP

PFMAP

IT=100, PN=100 IT=100, PN=1000

Lcomm Ecomm Run T.[ms] Lcomm Ecomm Run T.[ms] Lcomm Ecomm Run T.[ms]

4x4 irregular TGFF16 466.44 34626 2.63 395.72 28026 107 372.51 26170 173

Ratio 1 1 1 0.85 0.80 40 0.79 0.75 65

5x5 irregular TGFF25 10438.77 838272 5.76 9173.19 715883 111 9085.77 673411 318

Ratio 1 1 1 0.87 0.85 19 0.87 0.80 55

6x6 irregular TGFF36 156244.55 14980839 11.50 23336.87 1812894 149 21142.23 1582556 841

Ratio 1 1 1 0.14 0.12 13 0.13 0.10 73

11-core custom TGFF11 337.83 44657 1.47 230.78 27747 84 225.23 26672 129

Ratio 1 1 1 0.68 0.62 57 0.66 0.59 87

17-core custom TGFF17 15667.71 1675886 2.82 6232.33 665284 105 6038.62 656285 174

Ratio 1 1 1 0.39 0.39 37 0.38 0.39 61

28-core custom TGFF28 18909.16 1992570 7.24 15934.52 1778346 128 14880.78 1508527 437

Ratio 1 1 1 0.84 0.89 17 0.78 0.75 60

9.2.3. 3-D NoCs

A 3-D NoC interconnection architecture is composed of 2-D layers connected

to each other through vertical links. In Figure 9.15, a 3-D NoC architecture with

dimensions X=4, Y=4 and Z=3 is given. Most attractive way to connect these layers

is utilizing Through Silicon vias (TSV). However, TSV pads between layers occupy

significant chip area and lead to congestion delays [93]. Hence, finding a good mapping

algorithm, which decreases the number of TSVs, may increase the system performance
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Figure 9.15. A 3-D NoC architecture with the size of 4x4x3.

by saving chip area, reducing communication delay. From this point of view, we applied

PFMAP algorithm to applications such as AI, Telecom, DMC, MMS with 25-cores

(MMS25) and MMS with 40-cores (MMS40) onto different size of 3-D NoCs.

Initially, we determine the 3-D NoC network dimensions according to the number

of application task nodes. Given N as the number of task nodes for an application.

The calculation of 3-D NOC dimensions is given in Figure 9.16.

After determining dimensions of target 3-D NoC, we assume all mutual tiles in

neighbor layers are connected TSVs. Since TSVs are more costly than 2-D links, we

set the cost of a TSV as five times of a 2-D link’s cost. As the resampling iterations

increase, we prune unused TSVs. After a burn-in period, the algorithm ends with a

smallest number of TSVs of the target 3-D NoC.

The communication cost of an application onto regular, irregular or custom 3-D

NoC is represented as in Equation 9.6. We consider any type of a 3-D NoC as an

irregular or custom 2-D NoC; we extract the distance matrix of the target 3-D NoC

as explained in Figure 9.3. Then, we calculate the communication cost of a current

configuration using Equation 9.6.

In Figure 9.17, communication costs of PFMAP and NMAP algorithms on differ-
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Input: Number of task nodes for an application (N)

Output: X, Y, Z for 3-D NoC design

1: Function getDimensions (N)

2: X = Y = Z = ⌊ 3
√
N⌋

3: while X ∗ Y ∗ Z < N do

4: X ++;

5: if X ∗ Y ∗ Z ≥ N then

6: break;

7: end if

8: Y ++;

9: if X ∗ Y ∗ Z ≥ N then

10: break;

11: end if

12: Z ++;

13: end while

14: RETURN X,Y,Z

15: EndFunction

Figure 9.16. Determine X, Y, Z dimensions for 3-D NoC.
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Figure 9.17. Communication cost of PFMAP and NMAP on a 3-D NoC.
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ent size of 3-D NoCs for various real life applications are shown. Here, each application

is independent from each other. However, it is remarkable that PFMAP tends to give

much better results than NMAP when the density of the corresponding task graph is

high.

Mapping on 3-D NoCs is also done according to communication energy consump-

tion. For this purpose, energy model given in [94] is used. Here, the average energy

consumption of sending one bit of data from tile ti to tile tj is represented as follows:

E
ti,tj
bit = nERbit + nHELHbit + nVELV bit (9.13)

where, n is the number of routers, nH number of horizontal links, nV number of

vertical links, all passed by packets. n, nH and nV change with the mapping. ERbit

is the energy consumed by a router, ELHbit and ELV bit are the energy consumed on

the horizontal and vertical links. All ERbit, ELHbit and ELV bit values are technology

dependent; they can be used as constants as in [94]. We define Ecomm3D as the sum of

all communicating node pairs with the communication energy consumption of Eti,tj in

a benchmark.

In Table 9.7, we compared NMAP and PFMAP for four 3-D NoCs with different

sizes. Even with a small number of IT and PN values, PFMAP outperforms NMAP

algorithm.

9.2.4. Large-Scale NoCs

For large-scale NoCs, we have observed that creating initial configurations ran-

domly (line 5 in Figure 9.4) causes to increase in IT and PN values to find a good

solution. Instead of using pure random initial configurations for both large-scale 2-D

and 3-D NoCs, we apply an initialisation step as in NMAP. The pseudo code for our
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Table 9.7. Communication energy comparison of NMAP and PFMAP on 3-D NoCs.

Benchmark
NMAP PFMAP: IT=100, PN=100

Ecomm3D Run T.[ms] Ecomm3D Run T.[ms]

TGFF3x3x3 5190 14.35 4767 109

TGFF4x4x4 10820 45.84 10319 382

TGFF5x5x5 24937 713 22950 3027

TGFF6x6x6 53463 2660 44538 16477

Ratio 1 1 0.87 5.82

Figure 9.18. PFMAP initialization steps for large-scale NoCs.

initialize method is given in Figure 9.19.

The main difference between NMAP’s initialization method and ours is that in

each step we select the placement of a node randomly among best candidates with

equal costs. In NMAP, the selection operation always finds the same best location. As

we find different best candidates with equal cost, we run Initialization Function as the

number of particles times. Thus, we are able to create cost efficient initial configura-

tions. In Figure 9.18, the initialization steps of a configuration for VOPD application

are represented. Yet, we apply initialization only for large-scale NoCs. According to

Figure 9.19: in the first step (line 2), we select the task node with maximum com-

munication demand(node 7 in Figure 9.18). Then for the placement, one of the best

candidate locations is selected randomly (line 3). The best candidate locations for node

7 are shown as shaded circles in step− 0 in Figure 9.18. For each initial configuration

(i.e. particle), we select one of these best candidate locations randomly. In each step

of the initialization phase, there might multiple choices which results in different con-

figurations. For example, in step− 3, while for one configuration the best location for

node 8 is selected as the bottom-neighbor of the node 9, for a different configuration

it can be selected as right/left neighbor of the node 9. By selecting best candidates
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Input: Set of cores and nodes, TTG, CTG, RCT

Output: Mapping of cores to nodes

1: Function initialConf(RCT(R,C))

2: Select node Nmax with max. comm. demand

3: Select one of processor Pmax with max. connection link

4: Map Nmax onto Pmax

5: while no more node to be mapped do

6: Nmax = one of most comm. nodes with placed nodes

7: Pmax = one of procs. which causes min. comm. cost

8: Map Nmax onto Pmax

9: end while

10: RETURN modifiedRCT

11: EndFunction

Figure 9.19. Initialization function.

randomly in this way, we might come up with different configurations. These configu-

rations form our initial configuration set. After obtaining initial configuration set for

the given number of particles (first iteration in Figure 9.4), we can apply systematic

resampling on this set for the given number of iterations.

We have evaluated the scalability of our PFMAP algorithm on fully synthetic

task graphs (generated by TGFF) with various NoC sizes from 3x3 to 9x9 for 2-D

regular mesh networks. In Figures 9.20 and 9.21, timing and power results of seven

different synthetic task graphs are presented. These synthetic task graphs are mapped

onto regular 2-D mesh architectures by using NMAP and our PFMAP algorithm. As

already mentioned, we have used NIRGAM NoC simulator for the simulation of each

mapping.

As it is evident from Figures 9.20 and 9.21, PFMAP gives lower average packet

latency and total power than NMAP independent from the network size. As the net-

work size increases, number of generated packets will increase proportionally. Hence,

the gap between network delays of NMAP and PFMAP will rise up significantly. As a
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Figure 9.20. Average network latency comparison of NMAP and PFMAP for

different size of synthetic task graphs.

result of this, the gap between energy consumptions of NMAP and PFMAP will also

increase as the network is getting larger. Finally, we may come up with the result that

PFMAP is more scalable than NMAP, since it gives much better results in terms of

both total latency and energy consumption as the network getting larger.

9.2.5. Scalability of PFMAP on 3-D NoCs

In our final set of experiments, we have examined the scalability factor of our

PFMAP algorithm on 3-D NoCs. In this set of experiments, we have also used fully

synthetic task graphs (generated by TGFF) with different number of task nodes (i.e.

27 to 343) and edge weights (i.e. 34 to 521), as we did for 2-D NoCs. In Figure

9.22, communication costs of both PFMAP and NMAP algorithms on 3-D NoC for

different size of TGFF applications are available. Here, we also compare PFMAP with

itself by setting different ITs and PNs. For example, PFMAP10x100, given in Figure

9.22, means corresponding PFMAP solution is found with 10 iterations (IT) and 100

particles (PN). As it is obvious from Figure 9.22, all PFMAP solutions give much

better results than NMAP in any network size. It is also clear that communication
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Figure 9.21. Total network power comparison of NMAP and PFMAP for different

size of synthetic task graphs.

cost of PFMAP decreases with increasing IT and PN for any network size. The main

point here is that PFMAP outweighs NMAP even with a very low IT and PN values

in all network sizes.

The corresponding solution finding times of applications in Figure 9.22, are shown

in Figure 9.23. It is definite that running times of both NMAP and PFMAP algorithms

increase as the problem size getting larger. Similarly, running time of PFMAP algo-

rithm increases for larger IT and PN values in any network size. Although NMAP

is a very fast heuristic algorithm, PFMAP10x10 runs faster than NMAP while giving

better results than it in all network sizes. We cannot deny that NMAP is a very fast al-

gorithm, but the running time of PFMAP algorithm actually depends on the designer.

PFMAP finds a solution in 500 seconds for a huge application with 343 nodes and 541

edges, which gives a better result than NMAP by 20%.

In addition to these, either running time of PFMAP can be reduced or IT and PN

values can be increased to find a better mapping solution by using parallel platforms

such as GPU.
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Figure 9.22. Communication cost of PFMAP and NMAP algorithms on 3-D NoC for

different size of TGFF applications.
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Figure 9.23. Running time of NMAP and PFMAP algorithms with different size of

IT and PN for different size of TGFF applications.
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10. SIMULTANEOUS MAPPING AND ROUTING FOR

NoC WITH PARTICLE FILTERING

The most popular NoC topology is 2-D mesh architecture [52]. In a 2-D mesh

NoC architecture, all links have the same length, which eases physical design. Since

occupied area of a 2-D mesh topology grows linearly with the number of nodes, it is

a scalable architecture. Although 2-D mesh topology is the most common topology, it

must be designed in such a way as to avoid traffic accumulating in the center of the

mesh. This can be achieved by distributing traffic through the network all the way.

To do this, efficient mapping and routing algorithms must be applied to the target

topology.

Figure 10.1. Mapping and routing of an application onto a 2-D mesh NoC

architecture.

In Figure 10.1, task graph of VOPD application and its mapping with routing

on a 2-D mesh topology is given. On the left side of the Figure 10.1, nodes represent

the sub-modules of the application and numbers on the edges represent the average

communication volume (in 10Kbytes/s) between these modules. On the right side of the

Figure 10.1, target 2-D mesh NoC architecture is given. Here, while rectangular white

shapes represent processor cores, which are attached to routers, small shaded squares

represent the routers and links between these routers show the connectivity of routers

for the given architecture. In this scheme, the problem is the mapping of task nodes
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onto the physical cores (i.e. mapping problem) and deciding communication paths

for these cores (i.e. routing problem). Here, the main objective is to distribute the

traffic through the network instead of accumulating it in the center. Mapping process

is one to one mapping of each node onto a physical core on the target architecture.

As our PFMAP [7] algorithm proposes an efficient mapping, we do not go into detail

for mapping process. Routing process is setting communication paths between cores

according to the given task graph.

With an efficient mapping and routing, traffic can be distributed through the

network by minimizing congestion and contention delays. Congestion and contention

delays occur in a network due to

• complex network design,

• inefficient task to core mapping process,

• unsatisfactory routing algorithms.

As a result of these problems, routers become bottleneck of NoC architectures in large

networks. In order to avoid routers’ negative performance impact to the architecture,

congestion and contention latencies must be reduced. The first choice can be using

routerless, alternative architectures or reducing the number of routers on the archi-

tecture. There are recent works [12–18], which are focused on proposing new NoC

architectures by reducing the number of routers on the system. The second choice

can be using alternative, efficient mapping and routing algorithms, which decide the

physical placement of core pairs neighbour to each other in all way, and thus, route com-

munication requests efficiently by minimizing congestion and contention delays. Third

alternative can be a hybrid solution which uses simple switches instead of routers and

designing efficient mapping and routing algorithms on that architecture.

10.1. Target Architecture and Main Objective of the Proposed Algorithm

The proposed PFROUT algorithm works on two dimensional reconfigurable NoC

architectures. Likewise PFMAP, the input of the algorithm is the task graph of the
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single-use case or multi-use cases task graph(s). In these task graphs, nodes represent

the tasks and weighted edges represent the communication volume between tasks in

10KBytes/second.

Figure 10.2. 2-D reconfigurable NoC architecture with corridor width one (i.e.

CW=1) [1].

The target architecture, which is a mesh based 2-D reconfigurable NoC archi-

tecture, is given in Figure 10.2. The given target architecture is inspired from the

work proposed in [1]. This architecture has additional simple configuration switches

compared to a conventional 2-D mesh NoC architecture. These configurations switches

are much simpler than conventional routers. They have only switching capabilities and

these switches can be reconfigured at design time, according to the communication re-

quirement of a given application. In Figure 10.2, routers are not connected to each other

directly, they are connected to each other through the configuration switches. These

switches do not have memory, buffer or any other logic apart from simple switching

capabilities.

Properties of simple configuration switches can be given as follows:

• They do not have any memory.

• In each direction (North - East - South - West) they have both inputs and outputs.

• Their switching configuration can be set at design time.

• As they are very simple, they require less hardware and consume less power than
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conventional routers.

• As they do not have any memory, they do not support sharing without connection

to the conventional routers.

In Figure 10.2, a connection between cores 6 and 7 is set through only simple

switches. In this figure, three possible switch configurations in different directions are

presented.

The main objectives of the PFROUT algorithm for the target NoC architecture

are given as follows:

• Try to set connections through switches.

• If sharing required, use minimum number of routers.

• Find an optimum mapping and routing by placing most communicating nodes

close to each other.

PFROUT can find optimum if the traffic flow between nodes is set only through

these configuration switches and each node communicates only to its neighbours. By

taking all these aspects into consideration, PFROUT tries to find an optimum physical

placement of nodes on 2-D Mesh NoC architecture, and find an optimum routing for

the communication of the nodes.

The given architecture can be extended by increasing the number of simple con-

figuration switches between routers. In Figure 10.3, the reconfigurable 2-D mesh NoC

architecture with the corridor width two (i.e. CW=2) is given. Increasing corridor

width would be useful, if there is no solution for a given application for the given corri-

dor width. With increased corridor width, traffic flows have more flexibility to traverse

through the configuration switches.

There are two graphs as inputs to the mapping and routing algorithms. Likewise

in PFMAP, the first one of these is Task Traffic Graph (TTG), where the task nodes

and the communication flows between them are defined. The second input graph is
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Figure 10.3. 2-D reconfigurable NoC architecture with corridor width two (i.e.

CW=2) [1].

called Core Traffic Graph (CTG) in which processor or computational cores and their

communication relationships are given. In addition to these, Router-Switch Configu-

ration Topology (RSCT), which defines the location of routers and switches, is also

an input to the PFROUT algorithm. Since PFROUT, based on PFMAP algorithm,

all definitions and theorems of PFMAP are also valid for PFROUT. There are some

additional theorems and definitions for PFROUT:

Definition 10.1. Router-Switch Configuration Topology (RSCT) is a 2-D reconfig-

urable mesh NoC topology with each ordered pair RSrs,cs ∈ RSCT (RS,CS) repre-

senting either physical location of a switch or processor core attached to a router on

the target architecture. RS and CS indicates the number of rows and columns in the

topology respectively (i.e. RS × CS is NoC size). rs is the horizontal index number

(rowswitch) and cs is the vertical index number (colswitch) indicating the physical

location of RSrs,cs on the 2-D NoC architecture with switches.

In Figure 10.4, RCT and its corresponding RSCT are illustrated. In Figure 10.4,

processor cores are not shown. In both RCT and RSCT, rectangular shapes represent

the routers attached to the processor and shaded circles represent the switch nodes.

While RCT is composed of only routers, RSCT has both routers and switches. The
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(a) An example of RCT(3,4) (b) Corresponding RSCT(5,7)

Figure 10.4. An RCT and its corresponding RSCT.

RSCT is taken from [1]. In RSCT, there are some limitations for routers and switches in

terms of their number of inputs and outputs: both switch and router architectures have

only n-bit single input and single output in one side (North-East-South-West). Each

processor or computational core is attached to a router. In addition to the processor

interface, the maximum number of inputs and outputs for both switch and router is

four inputs and four outputs. This is illustrated in Figure 10.5. The physical location

of router or switch on RSCT defines the number of inputs and outputs for both switch

and router. For example, when a router is located on the right upper corner, then it

may have only inputs and outputs in West or South direction. In the same way, if

a switch resides on the bottom border of RSCT (switch cannot be on the corner) it

cannot have any inputs or outputs in South direction.

Figure 10.5. Number of available maximum inputs and output for router/switch.

Definition 10.2. Path is a dedicated link on RCT or RSCT, connecting source and

destination nodes travelling through routers and switches.
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The communication cost of a configuration is calculated for mapping and routing

by summing cost of each Path. In the calculation of PathCost, each switch cost on

that path is taken as one and each router cost on that path is taken as five. RSi

represents the cost of either a router or a switch on a path. R represents the number of

routers and P represents the number of switch on a path. The calculation of PathCost

for the source node Prs,cs and destination node Prd,cd is given in Equation 10.1.

PathCost =

R+S
∑

i=1

tPrs,cs ,Prd,cd
∗RSi (10.1)

As mentioned before, RoutCost is calculated by summing PathCosts of each

path in a given configuration. The calculation of RoutCost for a given configuration

can be found in Equation 10.2.

RoutCost =

E
∑

i=1

PathCosti (10.2)

In Figure 10.6, the main part of PFROUT algorithm is given. In the given al-

gorithm each particle represents a configuration. The algorithm generates P random

configurations in the first iteration (lines 4-6). Here, we define configuration as the or-

der of cores on tile-based NoC architecture. That is, we randomly place the processor

or computational cores on 2-D Mesh NoC architecture initially for each configuration.

Here, P is the number of particles and I is the number of iterations, that we define

before the beginning of running our algorithm. Since the execution time of our algo-

rithm is proportional to the P and I, we evaluated different values for both of them,

e.g. 10, 100, 1000.
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Input: RCT(R,C), RSCT(RS,CS), CTG(C,T)

Output: Mapping of cores to nodes and paths between these nodes

1: BestF itness = −1
2: for i = 0 to IT do

3: for j = 0 to PN do

4: if (i == 0) then

5: randomConf(particlesj) ;

6: else

7: randomNodeSwap(particlesj) ;

8: end if

9: Routej ⇐ findRouting(particlesj , RSCT (RS,CS), CTG(C, T ))

10: particleF itnessj ⇐ Routej .F itness ;

11: CurrF itness⇐ particleF itnessj ;

12: if CurrF itness > BestF itness then

13: BestF itness⇐ CurrF itness

14: BestConf ⇐ particlesj

15: BestRout⇐ Routej .Path

16: BestCost⇐ Routej.RoutCost

17: end if

18: end for

19: sysResamp(particleF itnesses, chosens, PN)

20: chooseResampleds(particles, chosens, PN)

21: end for

Figure 10.6. Main part of PFROUT algorithm.
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In the first iteration, we find routing for each randomly generated configuration

(line 9). The subroutine findRouting is called for each configuration (line 9). For

each of these configurations we get fitness values (line 10). The calculation of fitness

function for PFROUT is done in findRouting subroutine (see line 17 in Figure 10.7)

as given in Equation 10.3.

Fitnessrouting = 1/RoutCost (10.3)

According to initial configurations, we calculate the fitness value for each configu-

ration. Among these configurations, the largest fitness value is set as the minimum

BestF itness (lines 12-17). After generating initial configurations and finding the Best-

Fitness, we re-sample these configurations in each iteration (lines 19-20). Sampling

from the distribution and checking those samples with largest fitness values can be

utilized for a low cost RoutCost selection algorithm. In the remaining IT-1 iterations,

we apply pairwise swap among randomly selected nodes (line-7).

In Figure 10.7, the method of finding best routing is given. For each mapping

configuration(i.e. particle), this method is called by the main (see line 9 in Figure 10.6).

Firstly, for a given mapping RCT (R,C), that is RSCT (RS,CS), traffic amounts tk are

sorted in descending order (line 2). After that iteratively we check the tk edge weight

(i.e. traffic amount) whether it is an edge between two neighbour nodes in RCT (R,C)

(lines 5-8). To do this, we call NeighborHood method given in Figure 10.10. If the

selected tk is an is between two neighbour nodes, routing is applied for it (lines 6-7).

After routing tk edges that connect neighbour nodes Prs,cs and Prd,cd), we apply same

routing scheme for non-neighbour tk edges in descending order (lines 11-16). After

that, the fitness function for the given routing is calculated (line 17). At the end of

this method, Fitness, RoutCost and Path are returned to the main method (see line

9 in Figure 10.6).

In Figure 10.9, the method of finding best routing for each tk edge is given. This

method is called by the method given in Figure 10.7 for each tk edge. Before starting

routing for the current tk edge, we generate wavefront according to the distances of
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Input: RCT(R,C), RSCT(RS,CS), CTG(C,T)

Output: Routing paths between cores in RSCT, Routing Cost

1: Function findRouting (RCT(R,C), RSCT(RS,CS), CTG(C,T))

2: Sort traffic amounts tk in descending order

3: for k = 0 to E do

4: / ∗ tk is edge btw Prs,cs andPrd,cd ∗ /
5: if isNeighbour(RCT (R,C), Prs,cs , Prd,cd) then

6: RoutCost+ = Route(tk, Prs,cs, Prd,cd).Cost

7: Path[k] = Route(tk, Prs,cs , Prd,cd).Path

8: end if

9: end for

10: / ∗Remaining edges routed btw. non− neigbour Prs,cs andPrd,cd ∗ /
11: for k = 0 to E do

12: if !(isNeighbour(RCT (R,C), Prs ,cs, Prd,cd)) then

13: RoutCost+ = Route(tk, Prs,cs , Prd,cd).Cost

14: Path[k] = Route(tk, Prs,cs , Prd,cd).Path

15: end if

16: end for

17: Fitness = 1/RoutCost

18: RETURN Fitness, RoutCost and Path

19: EndFunction

Figure 10.7. Configuration routing algorithm.

source (i.e. Prs,cs)and destination (i.e. Prd,cd) nodes. In Figure 10.8, there is an example

for generating wavefront of a source-destination pair. In the generation process of

wavefront, we also consider the capacities of switches and routers. If the current node

on RSCT (RS,CS) is a switch, then ti,j value is added to the RoutCost (line 6).

In the similar way, if the current node on RSCT (RS,CS) is a router, then 5∗ ti,j
value is added to the RoutCost (line 8). After this step, the CurrNode is added to

the path (line 10). Next, by considering generated wavefront and the capacity of next

router/switch, the direction is determined (lines 11). At this step, we always control
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(a) 1. Edge (b) 2. Edge (c) 3. Edge

(d) 4. Edge (e) 5. Edge (f) 6. Edge

(g) 7. Edge (h) 8. Edge (i) 9. Edge

(j) 10. Edge (k) 11. Edge (l) 12. Edge

(m) 13. Edge (n) 14. Edge (o) 15. Edge

Figure 10.8. Wavefront generation and routing steps of H-263 decoder for a given

configuration.
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Input: RCT(R,C), RSCT(RS,CS), CTG(C,T), tk, Prs,cs, Prd,cd

Output: Route path between cores Prs,cs , Prd,cd, Route Cost

1: Function Route(RCT(R,C), RSCT(RS,CS), CTG(C,T), tk, Prs,cs , Prd,cd)

2: Generate wavefront (WF) for source (Prs,cs) and destination Prd,cd nodes on RSCT

3: CurrNode← SourceNode

4: while CurrNode 6= DestNode do

5: if CurrNode is a switch then

6: PathCost+ = ti,j

7: else

8: PathCost+ = 5 ∗ ti,j
9: end if

10: Add CurrNode to the Path

11: Select NextNode (Switch or Router) with min. cost on generated WF

12: /∗ If there is no free direction∗/
13: if No available NextNode then

14: NoSolution = SharedPath(tk , Prs,cs , Prd,cd)

15: if NoSolution then

16: break;

17: end if

18: end if

19: CurrNode← NextNode

20: end while

21: RETURN PathCost and Single Path

22: EndFunction

Figure 10.9. Routing of single path.
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Input: RCT(R,C), Prs,cs , Prd,cd

Output: Prs,cs , Prd,cd are (non)neighbour

1: Function isNeighbour (RCT(R,C),Prs,cs , Prd,cd)

2: return (((rs==rd)&& (abs(cs-cd) ==1)) ‖
3: ((cs==cd)&& ( abs(rs-rd) ==1)))

4: EndFunction

Figure 10.10. Nodes neighbourhood function.

the availability of the directions in the order of North-East-South-West.

If there is no direct free direction for the current node, then we call the greedy

SharedPath method given in Figure 10.11 (line 14). If there is still no available path,

even after calling greedy SharedPath method, then we break the running of routing

algorithm and report as there is no solution found (lines 15-17).

Input: RCT(R,C), RSCT(RS,CS), CTG(C,T), tk, Prs,cs, Prd,cd

Output: Shared path between cores Prs,cs, Prd,cd, Shared routing Cost

1: Function SharedPath(RCT(R,C), RSCT(RS,CS), CTG(C,T), tk, Prs,cs , Prd,cd)

2: if There is already a path btw. Prs,cs and Prd,cd then

3: Use this path, and calculate single path cost

4: else if There is already path from an intermediate node Pri,ci to Prd,cd then

5: Find a new path from Prs,cs to Pri,ci

6: else if There is already path from Prs,cs to an intermediate node Pri,ci then

7: Find a new path from Pri,ci to Prd,cd

8: else if There is an intermediate node Pri,ci which can connect Prs,cs and Prd,cd then

9: Find new paths from Prs,cs to Pri,ci and from Pri,ci to Prd,cd

10: else

11: Report no solution from Prs,cs to Prd,cd

12: end if

13: RETURN SharedPathCost and Shared Path

14: EndFunction

Figure 10.11. Search for shared paths.
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In Figure 10.11, greedy shared path approach is given. This method is called by

the Route method if there is no available direct connection between source Prs,cs and

destination Prd,cd nodes. As searching all possible shared paths is intractable problem,

we preferred to use a greedy approach. Hence, backtracking approach, which is time

consuming, is not taken into account. At first, we check whether there is already a

direct or indirect path between nodes Prs,cs and Prd,cd (line 2). If there exists such a

path, we assign this path to the current tk edge and calculate this direct or indirect

path cost (line 3). If there exists no such a path, we look for an intermediate node

Pri,ci which has a connection to the destination (line 4). If there is such a path, then

we find a new partial path from from Prs,cs to Pri,ci (line 5). Otherwise, we try to find

another intermediate node Pri,ci which has a connection from source to itself (line 6).

If there is such a path, then we find a new partial path from Pri,ci to Prd,cd (line 7).

Otherwise,in the last trial, we select an intermediate node Pri,ci and try to find new

paths Prs,cs to Pri,ci and from Pri,ci to Prd,cd (lines 8-9). If all aforementioned cases are

not possible, we report as there is no any available shared path for the given source

Prs,cs and destination Prd,cd nodes (line 11).

10.2. Case Studies

Likewise PFMAP [7], we implemented our PFROUT algorithm in C++ with

OPENMP library [89]. All tests have been carried out on a 32-bit Windows-7 PC with

a i5 CPU-750@2.67GHz and 4-GB RAM. We performed our experiments with various

applications such as VOPD, MMS-Suite (H263-decoder, H263-Encoder, MP3-Decoder,

MP3-encoder), Multi Window Display (MWD), Depth Map Computation (DMC) [95].

In addition to these, we have evaluated the scalability of our PFROUT algorithm on

fully synthetic task graphs (generated by TGFF [2]) with various NoC sizes from 3x3

to 10x10 for 2-D mesh networks. Mapping and routing algorithms of PFROUT applied

to the regular 2-D Mesh NoC architectures with Corridor Width 1 and 2 (e.g. CW=1,

CW=2).

In Figure 10.12, routing of VOPD application with AppAw [1], PFMAP [7] and

PFROUT is given. As PFROUT algorithm is a routing dedicated mapping algorithm,
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(a) Routing with AppAw [1] (RoutCost=5753)

(b) Routing after PFMAP mapping [7] (Rout-

Cost=5243)

(c) Routing and mapping with PFROUT (Rout-

Cost=4539)

Figure 10.12. Routing of VOPD application with AppAw [1], PFMAP [7] and

PFROUT for CW=1.
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it gives the best result in terms of RoutCost. In Figure 10.12b, routing for PFMAP [7] is

given. Here, we apply routing algorithm to the mapping found by PFMAP algorithm.

However, PFROUT algorithm (see Figure 10.12c) apply routing for each candidate

mapping.

In Table 10.1, RoutCost comparison of AppAw [1], PFMAP [7] and PFROUT

on MMS-Suite applications is given. MMS-Suite includes applications such as H263-

Decoder, H263-Encoder, MP3-Decoder and MP3-Encoder. As these applications use

the same set of IP-cores but the traffic pattern among the cores is different for each

application, an average graph is used for both mapping and routing process. As ex-

plained in AppAw [1], the average graph is composed of all edges values of four in-

put task graphs. Here, both PFROUT and PFMAP outperforms AppAw [1]. Since

mapping and routing processes are applied to the average graph of four input task

graphs, performance improvements over AppAw [1] for both PFMAP and PFROUT

are changeable. As the average task graph of MMS-Suite includes only twelve cores,

PFMAP is also capable of finding much better results than AppAw [1]. Both PFMAP

and PFROUT reduces RoutCost 30% to 35% for H263-Decoder, H263-Encoder and

MP3-Encoder. However, for MP3-Decoder application, both PFROUT and routing

applied to the PFMAP mapping decreases routing cost up to 79.96%.

Table 10.1. Routing cost comparison of AppAw [1], PFMAP [7] and PFROUT on

MMS-Suite application.

Application AppAw PFMAP PFROUT
PFMAP Imp. PFROUT Imp.

over AppAw over AppAw

H263-Dec 447721 311257 309743 30,48% 30,82%

H263-Enc 628608 409189 409189 34,91% 34,91%

MP3-Dec 212150 42520 42520 79,96% 79,96%

MP3-Enc 272893 181775 181615 33,39% 33,45%

In Table 10.2, RoutCost comparison of AppAw [1], PFMAP [7] and PFROUT

on MWD, VOPD and DMC applications is given. Here, we also calculated mapping

cost of each application for AppAw, PFMAP and PFROUT algorithms. As it is

obvious from the table, AppAw algorithm gives the worst results for both mapping and

routing whereas PFMAP gives best mappings and PFROUT gives the best routings.

Although mappings found by PFMAP are the best ones, PFROUT finds better results
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than PFMAP for routing. This shows that a good mapping cannot always be a good

candidate for routing. Hence, it makes more sense to run a routing dedicated mapping

(i.e. PFROUT) instead of a pure mapping algorithm (i.e. PFMAP). On the right

side of Table 10.2, we give PFROUT improvements over both AppAw and PFMAP.

PFROUT decreases routing cost up to 48,05% compared to AppAw and up to 34,99%

compared to routing, which is applied to the mapping found by PFMAP.

Table 10.2. Routing cost comparison of AppAw [1], PFMAP [7] and PFROUT on

MWD, VOPD and DMC applications.

Application
Mapping Cost Routing Cost PFROUT Routing Imp.

AppAw PFMAP PFROUT AppAw PFMAP PFROUT Over AppAw Over PFMAP

MWD 1248 1216 1248 1632 1504 1376 15,69% 8,51%

VOPD 4265 4125 4135 5753 5243 4539 21,10% 13,43%

DMC 14203 12393 12926 114858 59666 38787 66,23% 34,99%

10.2.1. Comparison of PFROUT Routing performance with AppAw [1] on

Synthetic Graphs from TGFF [2]

In this set of experiments we compare AppAw [1] and PFROUT routing algo-

rithms on synthetic graphs generated by TGFF [2]. In order to achieve a fair compar-

ison, we generated 10 graphs for each of the network sizes from 3x3 to 10x10. Here,

network size represents the dimension of the target 2-D mesh architecture in terms of

row and column numbers. As, there are 100 graphs for each scenario, we always consider

the average values for both routing algorithms. For PFROUT, we tested each scenario

for different number of iterations and particle numbers. For example, PFROUT10x100

means, PFROUT algorithm is used with 10 iterations and 100 particles.

In Figure 10.13, solution percentages of PFROUT and AppAw [1] algorithms on

TGFF graphs with the dimensions from 3x3 to 10x10 are given. As the routing problem

is intractable and both routing algorithms are heuristic approaches, they cannot find a

suitable routing for a given task graph and the target architecture. In Figures 10.13(a)

and 10.13(b), we see all direct (i.e. ithout sharing path) or indirect (i.e. with shared

path). In PFROUT, it is very easy to find a new routing for a given scenario. If
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there is no solution, a new routing can be tested by increasing number of particles

and iterations of the algorithm. According to these results, we can say that number of

solutions found by PFROUT is more than the algorithm given in AppAw [1] study. In

general it is clear that number of solutions decreases for both algorithms as the network

size and corresponding task graph becomes more complicated (e.g. having more nodes

and edges). For the network with corridor width 1, independent from the iteration (IT)

and particle numbers, PFROUT finds more solutions than its counterpart in all cases.

Moreover, for the network with corridor width 2, all variations of PFROUT always finds

solutions independent from the network size. However, AppAw [1] algorithm cannot

find all solutions as the network size is getting larger. Similarly, In Figures 10.13(c)

and 10.13(d), solution percentages without shared path are given. As it is obvious from

these charts, both algorithm tends to use more shared paths as the networks are getting

larger. However, PFROUT outperforms AppAw [1] by finding more direct solutions.

(a) (b)

(c) (d)

Figure 10.13. Total (shared and non-shared) and direct (non-shared) solution

percentages of synthetic task graphs from 3x3 to 10x10 (TGFF).

In Figure 10.14, we compared routing costs of both algorithms for corridor width

1 (i.e. CW=1) on different network sizes from 3x3 to 10x10. Here, PFROUT seems
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to give worse results than AppAw [1] for NoC sizes greater than 6x6. As the solution

finding percentage of PFROUT is more than AppAw [1] routing algorithm for larger

networks, we included only the results where each algorithm finds a solution.As AppAw

[1] algorithm cannot find more solutions than PFROUT for NoC sizes greater than 6x6,

only the average of solutions that are found are taken into account.

3x3 4x4 5x5 6x6 7x7 8x8 9x9 10x10

10
4

10
5

10
6

10
7

Synthetic task graphs generated by TGFF with sizes from 3x3 to 10x10

M
in

im
um

 R
ou

tin
g 

C
os

t

Routing cost comparison of AppAw and PFROUT for different size of synthetic task graphs for CW=1

 

 

AppAw
PFROUT10x10
PFROUT10x100
PFROUT100x100
PFROUT100x1000

Figure 10.14. Minimum routing cost values of both PFROUT and AppAw [1]

algorithms on various networks for CW=1.

Similarly, in Figure 10.15 (for the networks with corridor width 2), PFROUT

gives always less routing cost values than AppAw [1] algorithm. Here, it is obvious

that routing costs decreases as the number of iterations and particle numbers increase

for PFROUT algorithm.

In addition to the abovementioned comparisons, we also compared average num-

ber of routers used by two algorithms for different size of networks for both corridor

widths one and two (i.e. CW=1 and CW=2). As given in Figures 10.16 and 10.17,

number of routers used for both algorithms tend to increase while network size is grow-

ing. In all scenarios up to network size 7x7, all variations of PFROUT use less routers

than AppAw [1]. As PFROUT finds more solutions than AppAw [1] for large networks,

it also uses more routers in that networks.

For corridor width of two, independent from the iteration and particle numbers

PFROUT is capable of finding solutions for all network sizes (see Figure 10.13b).
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Figure 10.15. Minimum routing cost values of both PFROUT and AppAw [1]

algorithms on various networks for CW=2.
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Figure 10.16. Average number of routers used for both PFROUT and AppAw [1]

algorithms on various networks for CW=1.
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Although, PFROUT finds all solutions for CW=2, it also uses less routers than AppAw

[1] for all network sizes. This can be seen obviously from the Figure 10.17.

3x3 4x4 5x5 6x6 7x7 8x8 9x9 10x10
1

2

3

4

Synthetic task graphs generated by TGFF with sizes from 3x3 to 10x10

A
ve

ra
ge

 n
um

be
r 

of
 r

ou
te

rs
 u

se
d 

fo
r 

th
e 

ap
pl

ic
at

io
n

Average router count comparison of AppAw and PFROUT for different size of synthetic task graphs for CW=2

 

 
AppAw
PFROUT10x10
PFROUT10x100
PFROUT100x100
PFROUT100x1000

Figure 10.17. Average number of routers used for both PFROUT and AppAw [1]

algorithms on various networks for CW=2.

As a last experiment set for TGFF generated graphs, we also tested average

running time of both algorithms for different network sizes and CW=1 and CW=2.

The running timesof both algorithms for CW=1 is presented in Figure 10.18. Here, the

fastest PFROUT algorithm (with 10 iterations and particle numbers) runs as AppAw

[1] up to network size 7x7, while the other PFROUT variations takes more time than

AppAw [1]. It is already known that AppAw [1] algorithm is based on NMAP mapping,

which is very fast but inefficient. Although, the running time of PFROUT is more than

AppAw [1], it finds a solution in ten seconds for the worst case scenario (for the network

size 10x10, with 100 iterations and 1000 particles).

Similarly, in Figure 10.19, algorithm running times for both AppAw [1] and

PFROUT is given. As we already discussed previously, PFROUT is slower than Ap-

pAw [1] in general. This is valid also for CW=2 value. However, for also CW=2,

PFROUT is capable of finding better results than AppAw [1] with a very little timing

overhead. Again, in a worst case PFROUT cand find solutions in about ten seconds,

which is not much for a static routing algorithm.
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Figure 10.18. Comparison of algorithm running times of both PFROUT and

AppAw [1] algorithms on various networks for CW=1.
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Figure 10.19. Comparison of algorithm running times of both PFROUT and

AppAw [1] algorithms on various networks for CW=2.
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11. DYNAMIC RECONFIGURABLE POINT-TO-POINT

INTERCONNECTS

In this chapter of the thesis, we propose DRP2P interconnects for setting up

direct connection between two communicating units before the communication starts.

In DRP2P, routers need not exist. Hence, area overhead and power consumption due

to routers are completely not present in DRP2P. As a result, the area of the implemen-

tation is reduced. This directly reduces power consumption. Direct communication

paths are setup by dynamic partial self-reconfiguration. This is done by exploiting the

dynamic partial reconfiguration property of the Xilinx FPGAs with c2PCAP, a dedi-

cated on-chip engine developed for this purpose. This core adds a small overhead in

the area and power consumption. However, the experimental results show that power

consumption of DRP2P is much lower than that of a traditional 2D NoC.

This is the first work that introduces DRP2P communication architecture. In

Section 11.1, we will concentrate on the basic properties of this architecture, compare

it with traditional NoC and k × k crossbar, discuss limitations of the architecture.

Then, in Section 11.2, we will explain how DRP2Ps are obtained. This is the section

where the self reconfiguration engine, c2PCAP is also introduced with its applications

on not only on low-cost FPGAs like Spartan 3, 6, but also high-end FPGAs like Virtex

4. We will show that with our engine, it will be possible to setup DRP2Ps even on

low-cost Xilinx FPGAs. In Section 11.3, we present results of basic tests and the real-

life case studies. The final section concludes the work and sets directions for future

research.

11.1. Proposed DRP2P Architecture

This architecture is inspired from the fact stated at the first statement of this

chapter: P2P is the fastest communication way. In [96], a study has been carried out

to specify application-specific point-to-point (ASP2P) interconnects between pairs of
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cores during design time. These interconnects remain static during run-time. Our

method improves this approach by introducing a different set of P2P between pairs of

cores to the SoC in a time-multiplexed manner. We call the set of P2P interconnects in

one time-slot as the “communication scenario”. Each communication scenario must fit

at the related communication channel. During design time, the application is profiled

and analyzed so as to determine the communication scenarios at “each time-slot”.

The duration of the time-slot can be either dictated by the designer or computed

by the static analysis. The channels are decided by analyzing and synthesizing the

scenarios. In other words, to replace the current communication scenario with another

one, dynamic reconfiguration engine c2PCAP firstly erases the communication channel

(tear-down), and then reconfigures the interconnects of the new scenario (set-up).

Figure 11.1. Different P (# of partial bitstreams) values that can be stored in the

BRAM on Virtex-4 FPGAs.

Since the on-chip memory is limited, infinitely many communication scenarios

cannot be realized with DRP2P. The memory reserved for compressed bitstream stor-

age, compression ratio, size of reconfigurable area, device type and size determine the

number of communication scenarios. Figure 11.1 gives the information about number

of partial bitstreams P that can be stored in the BRAM on Virtex-4 FPGA family.

These values are application specific and may vary from application to application.

In addition to the c2PCAP core, we have also a monitoring system in our design.
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The main task of monitoring system is to trigger the c2PCAP core whenever a valid

communication request comes from a module. A communication request can be valid,

when it is already predefined and approved by also other modules, otherwise the request

is kept waiting until it is approved by the others. That is, when a module is finished

with its computation job, it should wait its next communicating partner to finish

its computational task. Moreover, a communication grant signal is assigned to each

module; these signals are altered only by the monitoring system.

In DRP2P, we reconfigure interconnects. We do not go in detail which ones are

control signals to control the flow. These are determined during design time, during

this time the analysis of the application is done. Different clock speeds are also sup-

ported by DRP2P. If two cores need to communicate at different clock frequencies,

either one of the cores can be replaced with a dual port RAM or buffers can be placed

in the communication channel. Obviously, cores at different communication speeds

would require buffers to prevent data loss. However, we did not experiment this sce-

nario because it is easily do-able with our approach: it should be noted that we are

dynamically reconfiguring a region, i.e. the communication channel, not solely P2P

interconnects. Therefore different communication architectures can be configured, re-

gardless of topology. The only constraint is the area of the communication channel.

We carried out such an implementation in our first case study MTT, where the com-

munication scenarios are not solely P2P but there might also exist architectures like

crossbar or broadcast. Hence, if desired, buffers can also be placed equally likely.

DRP2P is designed for nonreactive systems. Start and end times of communica-

tion scenarios are not simultaneous. The longest communication time determines the

duration of each scenario. However, profiling and analysis of the application has to be

carried out before deciding on the communication scenarios.

11.1.1. Theoretical Latency Analysis of DRP2P

Assume that there exist M modules communicating each other and there are N

different communication scenarios. Half of these modules (M/2) are located on the



118

Figure 11.2. Four different communication scenarios.

left side and the other half resides on the right side. The modules in each half are

placed one above the other and vertically. Suppose that data flow occurs from left

to right and each module on the left half has a directional n-bit connection with its

opposite partner on the right half. Hence, the channel width WC between modules

(the total number of single wires between modules on both sides) is M/2 × n. The

duration of one communication scenario is given by the longest data transfer time

between two communicating modules in that scenario. The data transfer time can be

defined as follows: Assume that the data is transferred in k packets and let the size of

each packet be s. For the maximum utilization of the wires between these modules,

a different portion of data has to be sent at each cycle of the system clock, Tclk.

Consequently, there should be no idle time until the data are completely transferred

to the receiving module. Then, the data transfer time between two communicating

modules is given as:

Tcomm = ((k × s)÷ n)× Tclk (11.1)

Note that some of these scenarios can be repeated during the execution of the

multiprocessor system. Therefore, there can be L (>= N) scenarios in an application.

Again, for illustrative purposes, we can assume that L = N and each scenario runs

only once. Assuming that the data transfer time in each communication scenario is

equal, the total communication time is given as:
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Tcomm tot = N × (((k × s)÷ n)× Tclk) (11.2)

If we assume that the initial communication scenario is downloaded with the

complete bitstream, we can say that the same system requires N −1 dynamic reconfig-

urations during the runtime of the multiprocessor system. Let RRR (Reconfiguration

Repetition Rate) define the number of dynamic reconfigurations. There can be multi-

ple locations for DRP2P interconnects and the required area has to be reserved during

design time. Therefore the dynamic reconfiguration time, Treconf for each reserved area

can be easily determined. If we assume that there is only one reserved area for DRP2P,

then we can calculate the total reconfiguration time given as:

Treconf tot = RRR× Treconf (11.3)

Now, referring to Figure 1.3 and Equation 11.1, we can write the best case and

worst case conditions for DRP2P interconnects as follows:

Tbest = Tcomm = ((k × s)÷ n)× Tclk (11.4)

Tworst = Tcomm + Treconf = ((k × s)÷ n)× Tclk + Treconf (11.5)

Similarly, the best and worst case conditions for the total data transfer time can

be calculated by using Equations 11.2 and 11.3:
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Tbest tot = Tcomm tot = N × (((k × s)÷ n)× Tclk) (11.6)

Tworst tot = Tcomm tot + Treconf tot

= N × (((k × s)÷ n)× Tclk) +RRR × Treconf

(11.7)

The data transfer size SD in each scenario and the total size of transferred data

SD tot in the entire system are given as:

SD = (M ÷ 2)× k × s (11.8)

SD tot = N × SD = N × ((M ÷ 2)× k × s) (11.9)

Based on the derived equations on a sample instance, we can numerically demon-

strate the latency due to DRP2P interconnects. An implementation of a 32-bit width

(n = 32), 8 modules (M = 8) communication structure (WC = 4 ∗ 32) is illustrated

in Figure 11.2. As we have 4 different communication scenarios (N = 4) in Figure

11.2, there exists 3 passes between scenarios. Hence, RRR is 3 for this example. As-

sume that packet size s is 4-bytes(=32-bits). The target FPGA is Virtex-4SX35 and

the system clock is set to 100MHz (Tclk = 10ns). For the reconfiguration, the config-

uration interface ICAP in 8-bit mode (a byte is sent to ICAP in each configuration

clock cycle) is selected and the configuration clock is set to 100MHz (Tcclk = 10ns);

the reconfiguration speed is therefore 100MB/s. Each partial bitstream size is 6524

Bytes. Hence, the reconfiguration time for each pass between different scenarios

Treconf = 6524 ∗ 10ns = 65.24µs. For example, according to the Equation 11.7, for
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k=5, the total data transfer time for SD tot = 320Bytes in best and worst case (see

Figure 11.3) are calculated as follows:

Tbest tot = 4× (((5× 32)÷ 32)× 10ns) = 0, 0002ms

Tworst tot = 4× (((5× 32)÷ 32)× 10ns) + 3× 0.06524ms = 0, 196ms

11.1.2. Comparison of DRP2P with 2-D Mesh NoC

For the comparison of DPRP2P with NoC architecture, we have preferred to use

the Network on Chip emulator (NoCem) with mesh topology because of its availability.

NoCem is available for free download by OpenCores [97]. The NoCem is an open source

(protected under GNU General Public License), on Chip Network Emulation Tool and

a body of VHDL code configurable by a top-level package file that can create a variety

of Network on Chips on parameters of data-width, virtual channel implementations,

topology, and in-network buffering lengths. Once parameterized, the resulting NoC

is generated automatically with use of VHDL generics and generate statements. It

supports three different NoC topologies: mesh, torus and double torus. For a 4*4 mesh

topology with 16-bit data width, it occupies 78% of Virtex-II FPGA (xc2vp30) [98].

Figure 11.3. Comparison of DRP2P and NoCem with 3*3 mesh topology for different

SD values.

To utilize the DRP2P communication architecture efficiently, the designer should

be aware of the fact that the computation time must be longer than reconfiguration la-

tency (Tcomp ≥ Treconf). For this example the reconfiguration latency is approximately
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about 0,196ms (at 100MHz, 8-bit configuration interface). Here it is obvious that the

reconfiguration latency may be decreased to half (98µs) or one fourth (49µs) of the

original one by increasing the reconfiguration interface width to 16-bit or 32-bit.

By changing values of SD tot for this example, we can obtain a comparison of

DRP2P with NoCem architecture which is shown in Figure 11.3. We have configured

to NoCem as 3*3 mesh topology with simple packet type; with no virtual channels.

Here, in the best case, the partial reconfiguration always and totally overlaps with the

computation. If the duration of a computation is greater than the partial reconfigu-

ration time of the next communication pattern, then the DRP2P interconnects is the

best, regardless of the type and size of the NoC. So, each pattern will be configured

during computation, that is, prior to the related communication and hence there will

be no reconfiguration overhead in terms of time. However, in the worst case, the com-

putation takes very little time; the time interval of computation never overlaps with

the partial reconfiguration.

We did not carry out a specific study on throughput because we transfer data at

each clock period in DRP2P. Since there is no buffer or logic between two communi-

cating nodes in DRP2P, the throughput in both cases of is identical to the throughput

of a wire. Similarly in experiments with NoC, virtual channel depth is set to 0, i.e.

there are no buffers. We carried out all experiments with 100MHz communication and

computation speed.

As it is obvious from the chart, in the worst case analysis for the small SD tot values

(up to 320K), the NoC outperforms the DRP2P. However, as the SD tot value increases

(from 320K), the DRP2P gives better results than NoC architecture. Hence, it can

be easily claimed that DRP2P architecture is more suitable than NoC approach for

large data transfer where the possible number of different communication architecture

patterns (N) between nodes are limited in terms of data storage. However, in the best

case, DRP2P always outperforms NoC.

Table 11.1 presents the power consumption results of ML402 board and occu-



123

pied area of the design in Figure 11.2 on Virtex-4SX35 and Spartan-6 XC6SLX45

respectively. We have implemented this design with DRP2P and 3*3 mesh topology

with simple packet type of NoCem. Here, the modules M1-M4 are 8*8, while M5-M8

are 16*16 unsigned multipliers for both DRP2P and NoCem designs. The occupied

area also includes these LUT-based multiplier blocks. The difference between design

types “DRP2P without reconfiguration” and “DRP2P with reconfiguration” is the

case, where we have cut the clock input of the ICAP module for the design without

reconfiguration. The rest of the designs are identical. The aim is to observe the pure

power consumption due to partial reconfiguration.

Table 11.1. Power Consumption of ML402 board and occupied area on Virtex-4SX35

and Spartan-6 XC6SLX45, 8-Modules (WC :128).

ML402 Board Virtex-4SX35 Spartan-6 XC6SLX45

Power [Watt] occupied area occupied area

Slices BRAM Slices BRAM

Available on FPGA 10086 192 6822 116

Empty Design 3,195 - - - -

DRP2P without
3,390

2011, (13%) 8, (4.1%) 603, (8%) 8, (6.8%)

Reconfiguration

DRP2P with
3,551

2011, (13%) 8, (4.1%) 603, (8%) 8, (6.8%)

Reconfiguration

3*3 Mesh
3,726

10086, (65%) - 3868, (56%) -

of NoCem

As it is obvious from the timing, power and area results of DRP2P and NoCem

designs, the DRP2P approach gives better results than NoC architecture when the

packets being sent are getting larger. In addition to timing performance of DRP2P, it

is also less power consuming, more area efficient than the design with 2D-Mesh imple-

mentation of NoCem on both Virtex-4 and Spartan-6 FPGAs. When the difference of

DRP2P and NoCem with empty design board power is considered, NoCem consumes

531mw, for the same design DRP2P consumes only 356mW; power gain in DRP2P is

about 33% compared to NoCem. Therefore, it makes more sense to use DRP2P for

such communication infrastructures like in Figure 11.2.

11.1.3. Comparison of DRP2P with a 2-D Reconfigurable Mesh NoC [1]

We have implemented the communication infrastructure of the multi-media sys-

tem (MMS) by utilizing runtime partial reconfiguration property of Spartan-6 FPGA.
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The MMS benchmark includes H.263 decoder, H.263 encoder, MP3 encoder, and MP3

decoder applications [1]. Although the communication flow among the cores is differ-

ent for each application, each application uses the similar set of IP-cores. In Figure

11.4, the task graph of each application in MMS suite is given. Here, it is worth to

mention that each application uses not all cores but only some of them in the MMS

suite. Therefore, unused cores (nodes that have no connections to any other nodes

in the each task graph) for each application can be switched off to reduce the power

consumption. This can be done by pruning the clock input of unused core at each

scenario change, i.e. application switching. The pruning process of clock input, which

is named clock gating method, for unused core can be done by utilizing partial runtime

reconfiguration.

As in [1], we have also used the same task mapping procedure for MMS suite. In

this scheme, the different tasks of MMS are mapped on 12 cores. In [1], MMS is imple-

mented on the reconfigurable NoC, which uses not only routers but also configuration

switches for packet routing.

The switching time between most use-cases in a SoC is of the order of few milli-

seconds [99]. According to the work in [1], the switching operation between applications

in MMS can be done either by a configuration manager in reconfiguration process or

by storing configuration data in configuration switches and routers. In our case, the

switching operation between these applications is done through runtime partial recon-

figuration of Spartan-6 FPGA. We have defined the fixed area for cores, which are

common all 4 applications in MMS, and the reconfigurable area for the P2P intercon-

nects, which are different for each application. This is shown in detail in Figure 11.5.

In our approach, there are dedicated P2P 32-bit links for each communication flow

in MMS task graph. The runtime reconfiguration latency and power dissipation for

configuration switching can be ignored due to infrequent switching [1].
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(a) H263-Decoder Task Graph (b) H263-Encoder Task Graph

(c) MP3-Decoder Task Graph (d) MP3-Encoder Task Graph

Figure 11.4. Task graphs of applications in MMS suite.
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(a) H263-Decoder physical placement on FPGA

(b) H263-Encoder physical placement on FPGA

(c) MP3-Decoder physical placement on FPGA

(d) MP3-Encoder physical placement on FPGA

Figure 11.5. MMS physical placement on FPGA.
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11.1.4. Comparison of DRP2P with other communication architectures

In Figure 11.6, an n-bit width 256*256 cross point communication architecture

and its possible implementations are illustrated. The first and the most common

implementation of this architecture is multiplexer based approach, shown in Figure

11.6a. It cannot be denied that this approach is the most speed efficient. Switching

between different communication patterns occur in a few clock cycles. However, the

occupied area by this approach is infeasible. Even for 1-bit width of 256*256 cross point

architecture, the required number of slices is 19476 /20480 of a Spartan-XC3S2000 (95%

of the whole chip). Hence, the power consumption of such a huge circuit will be very

high. Therefore this approach will not be practicable for small FPGAs (<2M gates).

(a) Mux-based Implemen-

tation

(b) NoC-Ring Topology (c) NoC-Mesh Topology

(d) N possible communication patterns

Figure 11.6. n-bit width k*k (k=256) point communication architecture and possible

implementations.
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The second possible way to implement this architecture may be using a ring

Network-on-Chip (Figure 11.6b). However, it is obvious that communication from

one node to other mostly requires multi-hops (e.g. M1 to M512 requires 256 hops)

which actually results in increased latency due to packetization, routing and switching

through multiple routers. Apart from having increased latency, this approach seems to

be infeasible in terms of area and power.

Alternatively, a mesh NoC, Figure 11.6c, can be a competitor to other approaches.

Like the multiplexer based approach, the mesh topology is also more time efficient then

ring topology NoC. The worst case time cost of communication from any node to any

other node (e.g. from M1 to M512) is traveling about 46 routers (vertically 15 hops,

horizontally 31 hops). The number of hops can be drastically reduced by adding some

new links to the mesh topology. However, because of very complex routing between

routers the occupied area by this method is unpractical to be implemented on a small

FPGA. Even a 4*4 16-bit width 2D-mesh grid topology occupies about 78% of Virtex-II

FPGA (xc2vp30) [98].

All above mentioned approaches suffer from either speed or area (likewise power).

A balanced solution in terms of speed and area may be the DRP2P communication

architecture, represented in Figure 11.6d. Such a configuration architecture can fit

into 192/5120 CLBs of a Spartan-XC3S2000 (3.75% of the whole chip). To pass 256

signals safely, we have used 32 bus macros, which are located one below the other. In

addition to the occupied area of slice based bus macros, 2-CLB-width area is reserved

for signal flow from F2R bus macros to R2F bus macros. So, totally 6-CLB-width area

is occupied for glitch-free signal flow between modules. As a result, to pass 256 signals

32x6 = 192 CLBs are occupied. The information of each communication scenario must

be stored as a partial bitstream for this approach.

11.2. Design Flow for DRP2P

The design flow for DRP2P is given in Figure 11.7. This flow is similar to flow

given in Figure 7.1, which is general configuration flow for c2PCAP reconfiguration
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engine. Since some of these steps are already mentioned in Section 7.1, here, we only

focus on steps, which are related to only DRP2P. Figure 11.7, numbers over the boxes

represent the appropriate section for each process.

Figure 11.7. Design flow for DRP2P.

11.2.1. Profiling of the Application

Initially, a design on FPGA is being profiled and its communication infrastructure

between computing elements is being extracted manually at design time. According

to timing and area requirements of the design, the dynamic communication structure

of nodes is disclosed with simulation tools. This process gives us the task mappings,

communication scenarios and communication channels.
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11.2.2. Partial Bitstream Generation for all Communication Scenarios

After determining communication scenarios, a partial bitstream is generated for

each of them. Partial bitstream generation steps are given in the following paragraphs.

11.2.2.1. Dynamic Partial Self-Reconfiguration Flow. The c2PCAP core behaves as if

it is a mirror of SelectMAP port, as same in ICAP. The configuration control flow in

this work is very similar to SelectMAP configuration Flow Diagram in [10] except that

PROG, INIT, DONE pins are not taken into account in our study. This control flow

has been already illustrated in detail in Figure 5 of our cPCAP core study [9].

Before this, communication infrastructure of the design is located an place, where

it communicates through only hard bus macros. The details of generation of hard bus

macros are given in the following subsections.

11.2.2.2. Slice Based Bus Macros. For a lossless data communication between recon-

figurable and fixed area in a reconfigurable design, the designer must use a type of bus

macro, which guarantees a safe data flow in both directions at the time of reconfigu-

ration process. Such a lossless communication can be implemented by tri-state buffers

offered by Xilinx Inc. However, some FPGA series from Xilinx such as Virtex-4 and

pure Spartan-3 families have no tri-state buffers. Hence, for these device families a

new type slice-based bus-macro, which acts as a tri-state buffer, should be developed.

There has been some papers published related to this subject such as [100] and [101]

using LUT based multiplexer and and-gate approaches respectively. The similar slice

based bus macros are used in this work as in Figure 11.8. Contrary to and-gate im-

plementation, transparent latches keep the last data before reconfiguration starts, thus

there is no data loss during reconfiguration. To guarantee a glitch-free signal flow from

one side to other side two kinds of bus macros (from fixed to reconfigurable area: F2R

and from reconfigurable to fixed area: R2F) are used. Since, each bus macro (narrow

mode) has a width of 2-CLB, totaly 4-CLB-width area is occupied for F2R and R2F

slice based bus macros to pass 8-bit signal from one side to other side safely.
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Figure 11.8. General structure of slice based bus macros.

Actually, there are no available slice based hard bus macros offered by Xilinx for

Spartan-6 FPGAs. However, there are some bus macros which are directly used for

some target FPGA families (e.g. Virtex-5, Virtex-6) from Xilinx. Instead of designing

a new bus macro we manipulated and adapted Virtex-5 bus macros to the Spartan-6

bus macros in our recently published study [21]. The 4-bitwidth synchronous single

slice hard bus macro component was illustrated in Figures 3 and 4 in [21].

11.3. Test and Results

The soft c2PCAP core is developed in VHDL. It has been synthesized on Spartan-

3S1000 Starter Kit Board, Atlys Spartan-6 FPGA Development Board and also on

ML402 (Virtex-4) Evaluation Platform for experimental purposes.

The terms “Compression Ratio (CR)” and “Space Savings (SS)” used in tables

can be formulated in Equations 11.10 and 11.11 respectively (Compressed Size:CS,

Original Size:OS).

CR = (OS ÷ CS) : 1 (11.10)
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SS = ((1− (CS ÷OS))× 100)% (11.11)

Here it is noted that the “CS” and “SS” are actually based on the structure and

size of the partial bitstream.

Different communication patterns have been designated between a number of

computing cores on Spartan-3S1000 and Virtex-4SX35. There are four different com-

munication scenarios in all examples and a partial bitstream is generated for each one;

i.e. RRR=4. Note that, the communication scenarios change in round robin manner;

i.e. p1 → p2 → p3 → p4 → p1 → p2...

The implementation cost of the communication structure is summarized in Table

11.2 and 11.3. In these tables, various designs with different number of modules(8 to

48) and WC values (16 to 384) are shown. The reconfigurable area is fixed to 2 CLB

columns for every design. In Table 11.2, the size of each original partial bitstream

and of all other possible joint bitstreams for three different designs are available. The

reconfigurable area for each design is the same and has the same number of logic com-

ponents. Hence, as the number of modules and also wiring between modules increases,

the compression ratio decreases. The reason for this phenomenon is that the number

of consecutive zeroes in the partial bitstreams decreases. The communication pattern

between modules for each design is completely random and different from each other.

The results for the designs with regular connection patterns would be better than our

results.

As it is obvious from the tables, by increasing the number of modules, bigger

compressed bitstreams are obtained. In Table 11.2, while pc4 is 744 Bytes for the

design with 8-modules (WC :16) and it is 9742 Bytes for the design with 48-modules

(WC :192). The choice of smallest partial bitstream sets is summarized in Table 11.3.

After generating all possible partial and joint bitstreams for three different designs,
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Table 11.2. Partial bitstream size and their compression ratios for communication

reconfiguration on Spartan-3 1000 FPGA.

Partial # of Bit Original Compressed Compression Space # of # of

Bitstream Modules Width Size Size Ratio Savings BRAMs BRAMs

Bytes Bytes Original Compressed

p1

8 16

24060

750 32.08:1 96.88%

11.74

0.366

16 32 1050 22.91:1 95.64% 0.512

48 384 7523 3.32:1 69.85% 3.673

p2

8 16

24060

719 33.46:1 97.01%

11.74

0.351

16 32 1070 22.49:1 95.55% 0.522

48 384 7575 3.18:1 68.52% 3.699

p3

8 16

24060

743 32.38:1 96.91%

11.74

0.362

16 32 1117 21.54:1 95.36% 0.545

48 384 8417 2.86:1 65.02% 4.110

p4

8 16

24060

744 32.34:1 96.91%

11.74

0.362

16 32 1098 21.91:1 95.44% 0.536

48 384 9742 2.47:1 59.51% 4.757

p12

8 16

24060

199 120.09:1 99.17%

11.74

0.097

16 32 428 56.21:1 98.22% 0.208

48 384 4045 5.95:1 83.19% 1.975

p13

8 16

24060

259 92.9:1 98.92%

11.74

0.126

16 32 487 49.4:1 97.98% 0.237

48 384 3937 6.11:1 83.64% 1.922

p14

8 16

24060

206 116.8:1 99.14%

11.74

0.100

16 32 468 51.41:1 98.05% 0.228

48 384 6824 3.53:1 71.64% 3.332

p23

8 16

24060

236 101.95:1 99.02%

11.74

0.115

16 32 488 49.3:1 97.97% 0.238

48 384 5424 4.44:1 77.46% 2.648

p24

8 16

24060

222 108.38:1 99.08%

11.74

0.108

16 32 420 57.29:1 98.25% 0.205

48 384 6805 3.54:1 71.72% 3.323

p34

8 16

24060

238 101.09:1 99.01%

11.74

0.116

16 32 375 64.16:1 98.44% 0.183

48 384 6739 3.57:1 71.99% 3.290
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Table 11.3. Partial bitstream storage cost of communication reconfiguration for

PCAP [8], cPCAP [9] and c2PCAP cores.

Method # of Bit Reference Bitstreams Total Size # of Average # of Space

Modules Width Bitstream (Bytes) BlockRAMs BlockRAMs per Savings

1 bitsream

PCAP [8] all all - p1, p2, p3, p4 96240 46.99 11.75 0%

cPCAP [9]

8 16

- pc
1
, pc

2
, pc

3
, pc

4

2956 1.44 0.36 96.92%

16 32 4335 2.12 0.53 95.49%

48 384 33257 16.24 4.06 65.44%

c2PCAP

8 16 p2 pc
2
, pc

12
, pc

23
, pc

24
1376 0.67 0.17 98.57%

16 32 p4 pc
4
, pc

14
, pc

24
, pc

34
2361 1.15 0.29 97.54%

48 384 p1 pc
1
, pc

12
, pc

13
, pc

14
22329 10.90 2.73 76.80%

the optimal compressed bitstream sets are selected according to Algorithm 7.2. For

example, for the design with 8-modules (WC :16), the bitstream set pc2, p
c
12, p

c
23, p

c
24 is

found as an optimum solution and the average SS is 98.57% for the complete bitstream

set.

Figure 11.9. # of bitstreams per BRAM vs. WC for communication reconfiguration

of PCAP [8], cPCAP [9] and c2PCAP cores.

The average number of bitstreams per on-chip BRAM differs from PCAP to

cPCAP and c2PCAP cores. This is illustrated in Figure 11.9. In this chart, it is clear

that while the value of WC is getting larger, the average number of bitstreams per

BRAM decreases for cPCAP and c2PCAP cores. In addition to this, regardless of the

design, it is evident that the c2PCAP core is the most cost effective in terms of storage.
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11.3.1. Case Studies

11.3.1.1. Target Tracking Application. A Multiprocessor System-on-Chip (MPSoC)

architecture, which is optimized for Multiple Target Tracking (MTT) in automotive

applications, is represented in [102]. There are 23 Nios-II processors in this architecture

and the communication architecture between them changes with time in a round-robin

manner. As illustrated in Figure 11.10, there are mainly five different scenarios that

runs sequentially and repeatedly with time. In this architecture, the Pulse Repetition

Time (PRT), which is the time interval between two successive radar scans, is 25 ms.

Therefore, the total reconfiguration time for five scenarios must be smaller than PRT.

In addition to this, the longest reconfiguration time (e.g. 2,88 ms for P2 to P3 at

100MHz with ICAP 8-bit mode) must be smaller than the shortest computation time

(8ms for Track Maintenance Block). Since Tcomp ≥ Treconf , it is safe to say that the

computational time overlaps with the reconfiguration time. Hence, the reconfigurable

communication architecture is utilized in an optimum manner. It should be noted

that, the communication architecture of this case study is not implemented as DRP2P

interconnects. Each communication scenario (Figure 11.10a - 11.10f ) is thought as a

communication circuitry and replaced with others through DRP2P.

We implemented the communication architecture of this study on a Virtex-

4LX100. The reconfiguration latencies for each scenarios are summarized in Table

11.4(a). Although each reconfiguration time in ICAP 8-bit mode at 50MHz is shorter

than the shortest computation time (8ms for Track Maintenance Block), due to the

fact that the total reconfiguration time (27.17ms) is greater than PRT, it seems to be

unapplicable. However, the total reconfiguration latency (13.57ms) using ICAP 8-bit

mode at 100MHz is shorter than PRT and each reconfiguration time is shorter than

the shortest computation time. Therefore it is feasible to use c2PCAP with ICAP 8-bit

at 100MHz for the best DRP2P interconnects.

Each uncompressed partial bitstream is approximately 260KBytes for this study.

By cPCAP, each partial bitstream is compressed to the 79KBytes approximately with

∼70% space savings (storage requires ∼40 BRAM blocks). By c2PCAP, each bitstream
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(a) Initial Implementa-

tion: 3 shared buses

(b) [P1]: Shared bus for

data and code access

(c) [P2]: Crossbar: As-

signment Solver to KF

(d) [P3]: Crossbar for

Track Maintenance to KF

communication

(e) [P4]: Multiplexer

(Bus) for KF to Gating

Module Communication

(f) [P5]: Multiple low

freq busses for KF to Gat-

ing Module comm

Figure 11.10. Different scenarios of MPSoC architecture for MTT in a PRT.

is compressed to the 58KBytes approximately with ∼78% space savings (storage re-

quires ∼28 BRAM blocks). As a result, the storage cost of design will be 311KBytes

and requires ∼152/240 BRAM blocks on a Virtex-4LX100 (e.g.p1, p3, p23, p14, p35). By

using on-chip memory as a cache, which means storing only bitstream(s) for the next

communication scenario and removing past bitstream(s) from BRAM, only ∼60/240
BRAM blocks (25% of total) will be occupied. There are two different approaches

to use on-chip memory as a cache, first approach keeps a single bitstream on BRAM

while the second one keeps multiple bitstreams. Assume that there is only one partial

bitstream and three joint bitstreams (e.g.p2, p12, p23, p24) in the optimal set for four

different communication scenarios. In the first approach, only one partial bitstream

(e.g.p2) is stored on BRAM, the joint bitstreams are loaded when the corresponding

bitstream is needed. With this approach, the storage cost for bitstreams can be reduced

by factor 1 ÷ N . If we apply this approach to this example (e.g. p1, p3, p23, p14, p35),

we should store at most two partial bitstreams on BRAM, the BRAM usage can be

decreased from ∼152/240 to ∼60/240. While it is storage efficient, the main drawback

of the first approach is that it may require multiple bitstream load at a time. For
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example, assume that only p1 is available on the cache and p5 must be downloaded.

To achieve this, at first p1 must be removed then p3 and p35 must be loaded to cache.

As a second approach, for the given example (e.g. p1, p3, p23, p14, p35), p1 and p3 are

stored on BRAM initially. They can be directly read from cache, when they will be

used. To obtain p2, only p23 is taken to cache. For p4, p14 is also loaded to cache, in the

same way to get p5, after removing unused joint bitstreams p35 is loaded. So, instead

of storing five partial bitstreams on BRAM, it is enough to store at most three of them

for this example. So, we may reduce the BRAM usage from ∼152/240 to ∼91/240 for

such a design by using cache method.

Table 11.4. Reconfiguration latencies[ms] for case studies.

(a) MTT

ICAP (8-Bit) ICAP (32-Bit)

Freq. 50 100 75 100

PB

p1 5.36 2.68 0.894 0.670

p2 5.36 2.68 0.894 0.670

p3 5.77 2.88 0.962 0.721

p4 5.47 2.73 0.911 0.683

p5 5.21 2.60 0.868 0.651

Total 27.17 13.57 4.529 3.395

(b) N-Body

ICAP (8-Bit) ICAP (32-Bit)

Freq. 50 100 75 100

PB

p1 0.217 0.109 0.036 0.027

p2 0.217 0.109 0.036 0.027

p3 0.226 0.113 0.038 0.028

p4 0.240 0.120 0.040 0.030

p5 0.226 0.113 0.038 0.028

p6 0.226 0.113 0.038 0.028

p7 0.226 0.113 0.038 0.028

p8 0.324 0.162 0.054 0.040

Total 1.902 0.951 0.317 0.238

11.3.1.2. N-Body Problem. One of the computation intensive problems is the N-body

problem [103], which can be applied to extensive applications from various domains in

engineering and science. The N-body problem deals with N particles. Each particle

interacts with the remaining ones in each time step. To reduce the solution time of

this problem (O(N2)), the Barnes-Hut algorithm is applied to the N-body problem and

Cell Broadband Engine Architecture is used [104].

In [105], the design of the Cell processors (The Cell Broadband Engine processor)
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(a) Element interconnect bus (EIB). (BIF: Broadband inter-

face, IOIF: I/O interface) [105]

(b) 128-bit-width DRP2P com-

munication between SPEs and

MIC(Only SPE2 is connected

to MIC at this configuration)

Figure 11.11. Element interconnect bus (EIB) and DRP2P communication between

SPEs and MIC.

on-chip network and its communication and synchronization protocols are proposed.

Figure 11.11a shows the Element Interconnect Bus (EIB), the main component of

the Cell processor’s communication architecture, which provides the communication

between 8 Synergistic Processor Elements (SPEs), Power Processor Element (PPE),

I/O Interface and Memory Interface Controller (MIC).

In this case study, we implemented DRP2P to connect the nodes (SPEs) with

128-bit width reconfigurable bus channel to the MIC. These connections change in

round robin manner. Hence, there is only one 128-bit-width connection with MIC

at a time. So, each SPE communicates (sends or receives, in both directions) with

MIC sequentially. Figure 11.11b shows this communication architecture. Here, only

SPE2 is connected to MIC, all other SPEs are unconnected and process their computa-

tions at this time. While one SPE is communicating with the MIC, the others continue

their computations without being interrupted. This architecture is implemented on the

Virtex-4LX100 FPGA and the reconfiguration latency for each connection is summa-

rized in Table 11.4(b). Here p1 is the partial bitstream, which has the communication

information of SPE0 and MIC. In the same manner, the rest partial bitstreams have

the communication information of SPE1-SPE7 and MIC respectively.
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Figure 11.12. Total time consumed for communication between SPEs in N-Body

problem with different number of particles.

Figure 11.12 illustrates the communication latencies of EIB on Cell processor

and DRP2P interconnects on Virtex-4LX100 FPGA. With a clock speed of 3.2 GHz,

the Cell processor is a heterogeneous multi-core chip, which is capable of massive

floating-point processing. Our target platform, Virtex-4LX100 FPGA from XILINX,

is a reconfigurable, fully parallel platform with a clock speed of 100 MHz. As ob-

vious from the illustration, the DRP2P through ICAP in 32-bit mode at 100MHz

(DRP2P ICAP 32b 100MHZ) has the best performance regardless of the problem’s

size. The configuration clock speed and the width of configuration interface is propor-

tional to the power consumed during reconfiguration process. Hence, DRP2P with 8-bit

at 50MHz (DRP2P ICAP 8b 50MHZ) can be regarded as the least power consuming

method among DRP2P options. On the other hand, it performs worse than EIB on Cell

processor when the number of particles fewer than 8192. DRP2P ICAP 32b 75MHZ

and DRP2P ICAP 8b 100MHZ, are better than Cell processor in terms of communica-

tion latencies when the number of particles is greater than 2048 and 4096 respectively.
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12. CONCLUSION

In this thesis, we, firstly, discussed dynamic partial self-reconfiguration of Xil-

inx FPGAs through ICAP and SelectMAP interfaces and storing uncompressed, com-

pressed or joint partial bitstreams on off-chip or BlockRAM within the target FPGA.

Instead of using an external intelligent agent, we preferred to use internal agents such

as PCAP, cPCAP and c2PCAP in order to reduce the hardware cost and power con-

sumption simultaneously. As a result of these works, we achieved a very fast partial

reconfiguration compared to other serial JTAG interfaces. and using a new approach

such as storing modified partial bitstreams on off-chip/ on-chip memory and reading

them from there under the control of our efficient reconfiguration engines. The most

important advantage of these reconfiguration engines is to achieve very fast partial

reconfiguration compared to other serial JTAG interfaces and using a new approach

such as storing partial bitstreams on on-chip memory. However, it is obvious that the

number of BlockRAM units which are used for storing partial bitstreams cannot be

neglected. We overcome this issue by compressing these partial bitstreams in efficient

manners. Here, we did not only consider the target partial bitstream itself but also the

similarities between other candidate partial bitstreams as well.

This kind of implementation, using no other additional external devices apart

from the target FPGA, is a perfect solution for almost all systems based on cost and

power consumption. What’s also very impressive about this implementation is that

the developed reconfigurations can be applied to any type of Xilinx FPGAs. As each

of three reconfiguration engines occupies a very small area on the target device, they

can be located anywhere in the FPGA, whereas the location of the ICAP module on

Virtex-II devices and two ICAP modules on Virtex-4 are fixed [10].

In the following parts of the thesis, we mostly focused on the mapping and routing

of task cores onto the nodes of regular, irregular and custom tile-based 2-D and 3-D

NoC architectures. Since both mapping and routing problems of NoC are intractable,

we preferred to use greedy approaches. To solve both mapping and routing problems on
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tile based NoCs, we utilized the systematic resampling algorithm for particle filters. To

the best of our knowledge, we are first to apply this algorithm to solve mapping problem

on NoC architectures. According to the various experimental results, we showed that

both PFMAP and PFROUT algorithms give better results than their rivals. Timing

results also showed that both PFMAP and PFROUT are able to find an optimum or

near optimum solution in a few milliseconds for medium size commercial applications.

We gave the mathematical representations and definitions for both of the algorithms,

as well. With scalability analyses, we demonstrated that both algorithms are scalable

enough to solve mapping and routing problems larger networks.

Since there is no data dependency between the particles, we applied a multi-

thread approach to the parallel running particles. By exploiting C++ OPENMP li-

brary, we inserted thread level parallelism to our mapping algorithm. We have already

pointed out that the quality of mapping accuracy increases with the available com-

putational resources. Moreover, particles can run in parallel and are very suitable for

parallel computation platforms such as GPU, VPU to gain more speed. Thus, heuristic

PFMAP and PFROUT algorithms can run much faster on fully parallel platforms and

therefore gives better results in shorter times.

We also proposed dynamic reconfigurable point-to-point interconnects in parallel

multi-core architectures. We showed that the reconfiguration latency can be minimized

and the system works at its highest attainable speed as in direct connections if com-

munication paths can be reconfigured while the processors are operating on data in

their local memories. This can be achieved when the partial reconfiguration totally

overlaps with the computation time (Tcomp ≥ Treconf). Although NoC and NoC-like

approaches are scalable enough, they might require huge area and power consumption.

Our proposed method is a good candidate among other on-chip communication archi-

tectures, if the traffic of the system is known in advance and the number of possible

traffic patterns are limited.

There are some disadvantages of NoC architectures such as, large occupied area,

not being fast enough when the amount of data flow between communicating modules
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is getting larger, data synchronization problem, not having support for single source

to multiple sinks. Though their huge area and power consumption, NoC and NoC-like

architectures are still good solutions to on-chip communication architecture problems

on MPSoC architectures. If one wants to implement a NoC, he/she doesn’t need to

think over physical placement details, to consider about hard bus macros and to have

a deep knowledge of configuration and reconfiguration process. Therefore, in general,

embedded system designers find it easier to use NoCs than reconfigurable communi-

cations infrastructure. However, we proved that DRP2P architecture outweighs NoC

architecture in all three performance metrics such as time, area and power.

To reconfigure interconnects in DRP2P, there is no need to use an external intelli-

gent agent, there is also no need to use an external interface between controller and the

target reconfigurable device. As a result, neither an external controller nor an external

wiring between these devices is necessary for c2PCAP reconfiguration engine, which

is responsible for the control flow of reconfiguring interconnects in DRP2P. Therefore,

the hardware cost can be reduced. As the supply voltages for driving external devices

are higher than the supply voltages for the internal operations of the FPGA, the total

power consumption is reduced. By storing compressed partial bitstreams on on-chip

memory and controlling reconfiguration flow with an internal agent, c2PCAP core re-

duces hardware cost and power consumption simultaneously. Furthermore, with the

capability of storing compressed partial bitstreams, different partial bitstreams can be

stored on-chip memory at a glance.
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13. FUTURE DIRECTIONS

Both PFMAP and PFROUT given in Chapters 9 and 10 respectively, exploit

particle filters in order to find solutions. Due to the nature of particle filters, they are

able to run parallel and independently from each other. In the scope of the thesis, we

exploited C++ OPENMP library to insert these algorithms thread level parallelism.

As a future research direction, these algorithms can be modified to run on GPUs,

Accelerated Processing Units (APUs) or VPUs to speed up the running time of both

algorithms. If this can be achieved, because of the nature of particle filters, they tend

to give better results by increasing the iteration and particle numbers.

Both PFMAP and PFROUT algorithms work for static mapping at design time.

By monitoring the current traffic of the system, they can be adapted to run at execution

time as future research direction.

Although, P2P and NoC communication architectures are examined in the scope

of the thesis in detail, shared bus is not taken into consideration because of it tends to

be unscalable if the number of cores increase in the system. However, shared bus can

also be considered for small and medium size applications. Moreover, shared bus can

be used in a part of a heterogeneous communication architecture.

In Chapter 11, we give all details of the dynamic reconfigurable point-to-point

interconnects for parallel multi-core architectures. Likewise PFMAP and PFROUT,

DRP2P works for traffic patterns which are known in advance. If the given architecture

has unexpected incoming or outgoing traffic flows, DRP2P might be adapted to monitor

the system. Thus, DRP2P can also be used at execution time. In addition to these,

there might be some new research directions in order to reduce the reconfiguration time.

Configuration clock speed of current reconfiguration engines can be increased if they

are placed close to the reconfiguration memory interface. Thus, the reconfiguration

engines can be overclocked in order to speed up reconfiguration process.
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Processes, such as communication scenario extraction and selection of most ap-

propriate communication infrastructure are being done manually for DRP2P at the

moment. For these processes, an automation tool can be designed, which extracts the

communication scenario and decides the most suitable interconnection network at a

time for a given data intensive application.

The outcomes of both PFMAP (see Chapter 9) and PFROUT (see Chapter 10)

can be applied to DRP2P; as the improper location of communicating nodes might

increase the size of reconfigurable area(s), which results in the increase both recon-

figuration time and on-chip storage directly, a smart mapping like in PFMAP can be

utilized for DRP2P. Similarly, inefficient manual routing of wires in DRP2P might

increase the size of reconfigurable area(s). Hence, this process also can be done auto-

matically by using routing approach like in PFROUT.
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APPENDIX A: USER MANUAL FOR

RECONFIGURATION ENGINES AND DRP2P

PCAP, cPCAP and c2PCAP reconfiguration engines are used to accomplish Dy-

namic Partial Self-Reconfiguration on Xilinx FPGAs. The cPCAP is the first and the

c2PCAP is the second level extended version of PCAP, where the little letter ‘c’ stands

for “compression”. Since c2PCAP core consists of all properties of both PCAP and

cPCAP cores, we only focus on the usage of c2PCAP core in this part of the thesis. As

DRP2P uses c2PCAP core, it is enough to follow design flow given in Figure 11.7 in

Section 11.2. Here, the user must take into account the occupied reconfigurable area,

which consists of interconnects between communicating nodes. As the partial bitstream

size is proportional to the reconfigurable area, the occupied area for reconfiguration

must be kept as small as possible. To minimize reconfigurable area for DRP2P, we

applied WelshPowell heuristic graph coloring algorithm [106] to the input task graph.

This algorithm gives the same colors to the non-adjacent nodes in a given graph. The

physical location of cores are decided by this algorithm. This issue is examined in our

DRP2P publication [19] in detail.

The reconfiguration process is achieved through PCAP, cPCAP and c2PCAP

reconfiguration engines within the FPGA instead of using an embedded processor.

Since some of Xilinx FPGAs (e.g. pure Spartan-3) do not have an internal configuration

access port (ICAP), partial self-reconfiguration on them is done by adding 11 external

single wires to it’s SelectMAP parallel port.

The second level extended version of PCAP (c2PCAP) also works on the devices

with ICAP module (e.g Virtex-4, Spartan-6 FPGA). For such devices, there is no need

to use an external loop to SelectMAP to do self-reconfiguration process. Instead of

SelectMAP port, the ICAP module is used as the reconfiguration interface on these

devices.
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A.1. Configuration Flow for Reconfiguration Engines

The configuration flow of an FPGA for run-time reconfiguration via c2PCAP

is shown in Figure A.1. Initially, target design including c2PCAP core with empty

BlockRAM contents is generated. This generated bitstream called initial configuration.

After that by making changes in the design, partial bitstreams are generated for each

of different configuration. After obtaining partial bitstream of each design, difference

of each partial bitstream is taken with the reference partial bistream. Here we obtain

composite bistreams such as p12, p13 and etc. Then, reference partial bitstream and joint

bitstreams are compressed by using zero run-length coding. They are also converted

into the BlockRAM initial files as well. Empty BlockRAM contents in initial design

are filled with those BlockRAM files. After filling BlockRAM with these bitstreams,

modified initial design is regenerated. Finally, complete bitstream is generated with

modified configuration and this full bitstream is downloaded onto the target FPGA

through JTAG interface via a host (e.g. PC).

Figure A.1. Configuration flow.
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A.1.1. Dynamic Partial Self-Reconfiguration Flow

Each reconfiguration engine behaves as if it is a mirror of SelectMAP port, as

same in ICAP. The configuration control flow of our reconfiguration engines is very

similar to “SelectMAP configuration Flow Diagram” in [10] except that PROG, INIT,

DONE pins are not taken into account in our study. This control flow is illustrated in

detail in Figure A.2.

It is experimented, that our latest reconfiguration engine, c2PCAP core, can run

safely at all frequencies up to 75Mhz for Spartan-3 FPGA and 100Mhz for both Virtex-4

and Spartan-6 FPGAs.

Figure A.2. c2PCAP core configuration control flow diagram.

A.2. Partial Bitstream Manipulation

Our proposed c2PCAP is designed for decompressing the compressed bitstreams

stored in the BlockRAM, i.e. on-chip RAM of the Xilinx FPGAs. At first, changes
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in the design have to be determined. Then for each change in the design, partial

bitstreams have to be generated. The following subsections explain how the partial

bitstreams are compressed by software at design time and how they are decompressed

by hardware at run-time, i.e. c2PCAP core on the FPGA.

A.2.1. Compression

Compression process and generation of composite bistreams are done at design-

time after generating partial bistreams for the target design on the FPGA.

A.2.1.1. Step 1: Partial Bitstream Extraction. Assume that there are two original

partial bitstreams p1 and p2 for two different reconfigurations in the reconfigurable

area and p1 configures the FPGA before p2. Let b1,i denote the ith bit value in p1.

Disregarding the initial header and end portions of the bitstreams, each entry in both

partial bitstreams can be interpreted as follows:

• If b1,i and b2,i have the same value, then no change is required on the FPGA.

• If b1,i and b2,i have opposite values, then either a wire portion has to be placed

or removed on the FPGA.

This interpretation shows that if we can supress the similar and/or opposite

portions in the partial bitstreams, we can obtain smaller partial bitstreams. A very

simple and straightforward solution is the XOR function:

p21 = p12 = p1 ⊕ p2 (A.1)

where p12 can be named as the composite partial bitstream of p1 and p2. Note that p12

contains the bit values that point out common and different parts in p1 and p2

In a dynamically reconfigurable design, there are multiple partial bitstreams to

implement different functionalities interchangeably. These functionalities must be de-
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fined during the application development time, i.e. at design time. Let N be the

number of different functionalities. This means that there must exist N partial bit-

streams. Then we can obtain C (N, 2) different composite partial bitstreams by using

XOR operation. Figure A.3 shows all possible composite bitstreams when N = 4.

Figure A.3. Possible composite partial bitstreams, N=4.

A.2.1.2. Step 2: Partial Bitstream Compression. After taking the difference of bit-

streams, the zero run-length encoding compression technique is applied to original and

composite partial bitstreams.

The algorithm checks whether a byte in the partial bitstreams is zero or not. If

it is not zero, it is directly written to the BlockRAM. If it is zero, then the algorithm

counts the number of successive zero bytes in the partial bitstream and the byte count

is written to the BlockRAM by setting the parity bit of the related memory location.

Therefore the parity bit of BlockRAM is used as a flag to identify whether the corre-

sponding byte represents the number of successive zero bytes or the data in the partial

bitstream. The following example explains our compression method.

On the left side of the Figure A.4 we can see a portion of the uncompressed

partial bitstream, on the right side the compressed partial bitstream as it is stored in

the BlockRAM. In uncompressed partial bitstream the bytes are ordered from left to

right whereas the ordering is from right to left in the compressed bitstream file. Since

the first four bytes are different from zero (in this case “20”, “01”, “04”, “02”) they are

stored directly in the uncompressed bitstream. The fifth and sixth bytes are zero and
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Figure A.4. Bitstream compression example with zero run-length encoding.

there is no more zero bytes consecutive, so instead of storing these two sequential zero

bytes, the byte “02”, which is actually the number of zeros, is stored. For example,

after the “01 C9 60 30” byte sequence, there are 206 zero bytes. Instead of storing

206 bytes, we simply store one byte the “CE”, which is the hexadecimal value of 206.

If the number of consecutive zeros are more than 255, they are in multiple bytes.

For example, assume there are 1056 consecutive bytes in the bitstream, then they are

represented as “24FFFFFFFF” byte sequence.

A.2.1.3. Step 3: Partial Bitstream Picking. After compressing the original bitstreams

and their differences (XORed pairs), the smallest suitable partial bitstream set must be

elected to be stored on the on-chip memory. In Section 7.2.3, we have already given all

details in order to select optimal compressed bitstream set to be stored on the on-chip

memory. Hence, this part will not be discussed in this part of the manual.
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A.2.2. Decompression

The decompression process is done at run-time by the reconfiguration engine.

When a reconfiguration request comes to the system, the reconfiguration engine starts

to read partial bitstreams from BlockRAMs. For each byte stored on BlockRAM, our

reconfiguration engine controls whether this is an original byte or a number representing

the consecutive “00” bytes. Each byte read from BlockRAM is sent to the configuration

interface such as SelectMAP or ICAP. In the following subsections, decompression

process is examined in detail.

Figure A.5. Decompressing and extracting original bitstreams in two steps (PR: Any

reference bitstream, N: # of original bitstreams, M<=N, K<=N, L<=K).
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A.2.2.1. Step 1: Partial Bitstream Decompression. The decompression is straightfor-

ward as shown in Figure A.5. The identification of whether a byte in compressed

bitstream is controlled by the parity bit of appropriate byte. If the parity bit of the

byte value in BlockRAM file is set “1”, then it means that the byte shows the number

of zero bytes and as many zeroes are generated as the number states. Otherwise the

byte value is automatically written to the output.

A.2.2.2. Step 2: Partial Bitstream Extraction. If one of original bitstreams has been

selected as a desired design at that time, it is directly downloaded to the target device.

Otherwise, the XOR operation is applied to pr and prm, where pr is one of original

bitstreams and prm is a composite bitstream. The operation pr ⊕ prm is equivalent to

pr ⊕ (pr ⊕ pm), which gives pm.

In the following subsections, configuration interfaces SelectMAP and ICAP will

be examined in detail.

A.2.3. SelectMAP Specific Topics

Table A.1. SelectMAP port pin descriptions.

Signal Name Direction Description

CCLK Input Configuration clock

M[2:0] Input Configuration Mode selection

D[7:0] Input Byte-wide configuration data input

CS Input Active Low Chip Select input

WRITE Input Active Low Write Select input

BUSY Output Handshaking signal to indicate

successful data transfer

SelectMAP configuration data is loaded one byte at a time presented on the D[0:7]

bus on each rising CCLK edge. Two extra control signals are present for SelectMAP,

CS and WRITE. These signals must both be asserted Low for a configuration byte

to be transferred to the FPGA [10]. In addition, Table A.1 shows the SelectMAP
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pin descriptions. All signals, including ’BUSY’ indicator signal, are used for c2PCAP

hardware connection.

Table A.2. Loopback hardware pin connections for SelectMAP port on Spartan-3

starter kit board.

Signal FPGA Output Connector Type FPGA Input

Name Pins and Pin Nr Pins

CCLK “B6” A2,pin 21 99K B1,pin 39 FPGA CCLK “T15”

D[7:0]
“B5-B4-D10-D8” A2,pin 19,17,15,13,11,9,7,5 “M11-N11-P10-R10”

“D7-E7-D6-D5” B1,pin 40,7,9,11,13,15,17,19 “T7-R7-N6-M6”

CS “A7” A2,pin 23 99K B1,pin 20 FPGA CS B config “R3”

WRITE “A8” A2,pin 25 99K B1,pin 5 FPGA RD WR B config “T3”

BUSY “P9”
Handshaking signal to indicate

Any input pin
successful data transfer

Table A.2 shows the pinout descriptions for loopback hardware to the SelectMAP

port. In the second column of this table, there are FPGA output pins for SelectMAP

port, which are defined in user constraint file(ucf) of design as outputs of FPGA. These

all output pins are on A2 Expansion Connector of SPARTAN-3 Starter Kit Board and

they are directly connected to the FPGA Input pins with 11 external single wires. The

FPGA Input pins are on the most right column of Table A.2 and they are physically

on B1 Expansion Connector of SPARTAN-3 Starter Kit Board. The Spartan-3 Starter

Kit board has three 40-pin expansion connectors labeled A1, A2, and B1. The A1 and

A2 connectors are on the top edge of the board as in Figure A.6. Connector A1 is on

the top left, and A2 is on the top right. The B1 connector is along the right edge of

the board as in Figure A.6. For more details of expansion connector features please

refer to [10].

Notice that the most significant bit (MSB) of each configuration byte is on the

D0 pin. Figure A.7 shows two bytes (0xABCD) being reserved.

In order to achieve byte swapping, D[7] output (“B5”, pin 19 on A2) is connected

to D[0] input (“M11”, pin 40 on B1) and D[6] output (“B4”, pin 17 on A2) is connected

to D[1] input (“N11”, pin 7 on B1) and so on. It is shown in detail in Table A.3.
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Figure A.6. Spartan-3 starter kit board expansion connectors [10].

Figure A.7. Byte-Swapping Example [10].
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The reserved pins 7, 9, 11, 13, 15, 17, and 19 (D[1-7]) on B1 connector provide

the signals required to configure the FPGA in Master or Slave Parallel mode. In

addition, pin 40 on B1 is used either as DIN for serial configuration or as D[0] for

parallel configuration. Since, this design uses Parallel SelectMAP port, the pin 40 on

B1 is used as D[0] input.

For the lower frequency values (< 75MHz for Spartan-3 and < 100MHz for

Virtex-4 and Spartan-6), the CCLK signal can be chosen CLKFX again by changing

the value of this output. The CLKFX output of a DCM is a multiplied frequency of the

CLKIN frequency by the attribute-value ratio (CLKFX MULTIPLY/CLKFX DIVIDE)

to generate a clock signal with a new target frequency. Here CLKFX MULTIPLY is

the frequency multiplier constant which is an integer from 2 to 32, and in the same

way CLKFX DIVIDE is the frequency divisor constant which is an integer from 1 to

32 [10].

Table A.3. Loopback hardware byte swapping for SelectMAP port on Spartan-3

starter kit board.

FPGA Output FPGA Input

Pins Pins

D[7], pin 19 on A2 D[0] pin 40 on B1*

D[6], pin 17 on A2 D[1] pin 7 on B1

D[5], pin 15 on A2 D[2] pin 9 on B1

D[4], pin 13 on A2 D[3] pin 11 on B1

D[3], pin 11 on A2 D[4] pin 13 on B1

D[2], pin 9 on A2 D[5] pin 15 on B1

D[1], pin 7 on A2 D[6] pin 17 on B1

D[0], pin 5 on A2 D[7] pin 19 on B1

As mentioned above, the extra control signals CS andWE must both be asserted

Low for a configuration byte to be transferred to the FPGA. Furthermore, write select

input signal(WE) must be asserted at least one clock cycle after asserting the Chip

Select input(CS) signal. In the same way, write select input signal(WE) must be

deasserted at least one clock cycle before deasserting the Chip Select input(CS) signal
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[10] as in Figure A.8.

Figure A.8. Write cycle timing diagram [10].

A.2.4. Internal Configuration Access Port (ICAP) Specific Topics

The Internal Configuration Access Port (ICAP) allows access to configuration

data in the same manner as SelectMAP. ICAP has the same interface signaling as

SelectMAP other than the data bus, which is separated into read and write data buses.

ICAP has a chipselect signal (CS), a read-write control signal (RD), a clock (CLK),

a write data bus (DIN), and a read data bus (OUT). ICAP can be configured to two

different data bus widths, 8 bits or 32 bits. When the 8-bit ICAP interface is used,

the data is byte-reversed like SelectMAP. When the 32-bit interface is used, the data

is not reversed, which is the same as SelectMAP32. Since it is an internal component,

for the self reconfiguration of the target device, there is no need to use external wiring

to access this port [10].

The ICAP interface can be used to perform readback operations or partial recon-

figuration. When using ICAP for partial reconfiguration, the user must avoid changing

the logic or interconnect which the ICAP is itself connected to. ICAP can also be used

to read or write to the configuration registers(e.g. STAT, CTL, or FAR registers) [10].

There are two ICAP sites in Virtex-4 devices: TOP and BOTTOM. The imple-

mentation has the two interfaces share the same underlying logic. The only difference

between them is their location on the chip and the interconnect to which they can be

connected. The two interfaces can never be active at the same time. The default site

for a single ICAP is the TOP site, because the TOP site is active after configuration
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by default. If both sites are used, the TOP site must be activated first before switching

to the BOTTOM site [10].

Similarly, the partial self-reconfiguration on a Spartan-6 FPGA can be achieved

through ICAP module of the device up to 100MHz with a 16-bit interface only. How-

ever, Spartan-6 FPGAs do not support 8-bit and 32-bit for ICAP. Therefore, the maxi-

mum self-reconfiguration speed that can be achieved on a Spartan-6 FPGA is 200MB/s.

In addition to this, the external SelectMAP configuration interface can also be used for

initial or partial reconfiguration. Note that some of Spartan-6 FPGAs (e.g. XC6SLX4

devices or devices using TQG144 or CPG196 packages.) do not offer the SelectMAP

interface. Likewise Virtex-4 devices, Spartan-6 FPGAs offer the partial reconfiguration

in a two dimensional fashion [10]. The configuration details for Spartan-6 FPGA can

be found in Section 6.1.

A.2.5. Slice Based Bus Macros

For a lossless data communication between reconfigurable and fixed area in a

reconfigurable design, the designer must use a type of bus macro, which guarantees a

safe data flow in both directions at the time of reconfiguration process. Such a lossless

communication can be implemented by tri-state buffers offered by Xilinx Inc. However,

some FPGA series from Xilinx such as Virtex-4, Spartan-6 and pure Spartan-3 families

have no tri-sate buffers. Hence, for these device families a new type slice-based bus-

macro, which acts as a tri-state buffer, should be developed.

As in Figure A.9, independent from the data flow direction, the slices in the

reconfigurable area are all identity functions. For the communication from fixed area to

reconfigurable area each slice in the fixed area is implemented as an identity function,

however for the reverse communication transparent latches with control signals are

implemented. If the control signal is set to ’0’, it means that the data flow from

reconfigurable area to fixed area is allowed, otherwise it is prohibited to protect the fixed

part of the design from undesired transient signal switchings coming from reconfigurable

part at the time of reconfiguration.
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Figure A.9. General structure of slice based bus macro.

Contrary to and-gate implementation, transparent latches keep the last data be-

fore reconfiguration starts, thus there is no data loss during reconfiguration. Note that

for the implementation of slice based bus macros, the CLBs need not to be consecutive.

According to requirements of the design, a new CLB column or multiple CLB columns

can take place within the area of bus macros.

These two types of slice based bus macros are used, if the reconfigurable area

is on the left side. For the reverse type designs, there must be two other bus macros

available. By swapping the CLB blocks the two additional bus macros are derived from

the bus macros in Figure A.9.

There are no slice based HBMs offered by Xilinx for Spartan-6 FPGAs. However,

there are some bus macros which are directly used for some target FPGA families

(e.g. Virtex-5, Virtex-6) from Xilinx. Instead of designing a new bus macro we have

manipulated and adapted Virtex-5 bus macros to the Spartan-6 bus macros. The 4-

bit-width single slice HBM component is illustrated in Figure A.10. In Figure A.11,
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Figure A.10. 4-bit single slice Spartan-6 HBM.

the internal structure and connections of our single slice synchronous Spartan-6 bus

macro can be seen.

A.3. The Configuration Architecture of Virtex-4 and Pure Spartan-III

FPGAs from XILINX

As shown in Figure A.12, Virtex-4 configuration memory is arranged in frames,

which are the smallest addressable segments that are tiled about the device. In contrast

to previous generation of Virtex families, Virtex-4 architecture is composed of fixed-

length frames, each consisting of 41 words (each one 32-bit) [10]. Each configuration

frame has a unique 32bit address that can be divided into Block type, Top/Bottom

indicator, Row address, Column address, Minor address. Virtex-4 frames are columns

that span 8 CLB (Control Logic Block)+1 HCLK(Horizontal Clock)+ 8 CLB or the

equivalent logic such as, 2 BlockRAM + 1 HCLK + 2 BlockRAM or 16 IOB (In-

put/Output Block) + 1 HCLK + 16 IOB. Some special logics such as JTAG, ICAP

etc. are not taken into account by the columns [10].

For the Virtex-4 device, the Top/Bottom indicator specifies whether the target

is at the top or at the bottom half of the chip. The Block type indicates the type of a

block, if it is “00” then a block of CLB, IOB, DSP or GCLK, if it is “01” the BlockRAM

interconnect, if it is “10” the BlockRAM content is selected. The Row address (HCLK

row) specifies which row of the target device is selected. The Column address selects

a major column, such as a column of CLBs. Column addresses start at 0 on the left
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Figure A.11. Inside of Spartan-6 slice based HBM.
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and increase to the right. The Minor address selects a memory-cell address line within

a major column.

Figure A.12. Virtex-4 configuration frame addressing scheme [11].

The Spartan-3 FPGA configuration memory can be visualized as a rectangular

array of bits. The bits are grouped into vertical frames that are one-bit wide and extend

from the top of the array to the bottom. A frame is the atomic unit of configuration.

It is the smallest portion of the configuration memory that can be written to or read

from [10]. Frames are grouped into larger units called columns. Spartan-3 devices

have different types of columns: TERM(L/R), IOI (L/R), CLB, BlockRAM content,

BlockRAM Interconnect, GCLK columns.
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Figure A.13. Configuration column addressing scheme for Spartan-3S1000 FPGA.
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Certain IOBs that are located at the top and bottom of the device are config-

ured in a CLB column, along with the CLBs. Since IOBs that are located at the top

and bottom of the device is also a part of the appropriate CLB column, the designer

should use no pin-outs while choosing a reconfigurable area in a pure Spartan-3 device.

In addition to this, Spartan-3 doesn’t support glitch-less reconfiguration; that is, un-

modified bits in a partially reconfigured column in a Spartan-3 device are temporarily

reset during the reconfiguration process. Therefore, if this method is used, designers

make sure to manage these glitches by using handshaking for design communication.

In Figure A.13, FPGA Editor view of a Spartan3s1000 and column addressing of this

device can be seen. In FPGA Editor, the TERM(L/R) and GCLK columns are not

visible to the designer.

For the Spartan-3 devices three different address pieces specify a frames address:

the Column address, the Major address, and the Minor address. The Column address

indicates what kind of data is being loaded (“00” for TERM, IOI, CLB and GCLK,

“01” for BlockRAM, “10” for BlockRAM Interconnect columns). The Major address,

indicates where (vertically) in the device the frame lies. The Minor address, indicates

where within the Major address the frame lies [10].

In this work, for the partial reconfiguration of the Spartan-3 devices, the Bit-

gen “PartialMask” flow is used. This feature allows users to pick which configuration

columns are included in an active reconfiguration bitstream. According to “System

Reference Development Guide of XILINX” there are six types of PartialMask set-

tings: PartialGCLK, PartialLeft, PartialRight, PartialMask0 <mask>, PartialMask1

<mask> and PartialMask2 <mask> [10]. With PartialMask0, the columns in the col-

umn address “00” as indicated by the hexadecimal mask value are added to partial

bitstream. In the same way, with PartialMask1, the columns in the column address

“01” and with PartialMask2, the columns in the column address “10” are added to

partial bitstream. With PartialGCLK, the center global clock column is added to the

list of columns written to a partial bitstream. In PartialLeft/PartialRight, as the name

implies, the left/right half of the device (excluding the global clock column) is added

to list of columns written to a partial bitstream.
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Figure A.14. Partial mask derivation example for Spartan-3S1000 FPGA.
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A PartialMask derivation example is shown in Figure A.14. This figure is similar

to “PartialMask <mask> Derivation for Example 1” in [10]. However, in [10] only

the Virtex-II device is targeted. Unfortunately there is no detailed information for the

column map of Spartan-3 devices. Since the Spartan-3 family is also based on Virtex-II

architecture, the column map and PartialMask values of Spartan-3 family is derived

from “PartialMask <mask> Derivation for Example 1” in [10].

The <mask> is a hexadecimal string that indicates which columns within a mem-

ory block are included in the partial bitstream. In PartialMask each binary ’1’indicates

a column that is included in the partial bitstream, while each binary ’0’ indicates a

column that is excluded from the partial bitstream [10]. The value of <mask> can be

given in hexadecimal, binary or decimal. For the sake of clarity, in this illustration, the

<mask> value of PartialMask0 is in hexadecimal, the <mask> values of PartialMask1

and PartialMask2 are shown in binary. With PartialMask0 = “0000000003E0h” from

the 3. CLB column to 7.CLB column, totally 5 CLB columns are added to the list

of columns written to the partial bitstream. In the same way, with PartialMask1 =

’01b’ the BlockRAM at the right side and with PartialMask2 = ’11b’ the right and left

BlockRAM-Interconnect columns are included in the partial bitstream. Note that the

Spartan-3S1000 has only 2 BlockRAM and 2 BlockRAM Interconnect columns.

A.3.1. Creating Partial Reconfiguration Bitstreams

Partial reconfiguration of Spartan-3 devices can be accomplished through the par-

allel slave SelectMAP or JTAG interfaces. In addition to these configuration interfaces,

the ICAP interface can be used for Virtex-4 devices. Instead of resetting the device

and performing a complete reconfiguration, new data is loaded to reconfigure a specific

area of a device, while the rest of the device is still in operation [10].

A.3.1.1. Difference-Based Partial Reconfiguration:. The -g ActiveReconfig:Yes switch

is required for active partial reconfiguration, meaning that the device remains in full op-

eration while the new partial bitstream is being downloaded. If ActiveReconfig:Yes
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is not specified (or -g ActiveReconfig:No is specified), then the partial bitstream

contains the Shutdown and AGHIGH commands used to deassert DONE. Additionally,

the -g Persist:Yes switch is required when utilizing partial reconfiguration through

the SelectMAP mode. This switch allows the SelectMAP pins to persist after the

device is configured, which allows the SelectMAP interface to be used for partial re-

configuration. The -g Persist:Yes setting is also required for the initial bitstream.

However, for the reconfiguration through ICAP interface, the -g Persist:No setting

is used. This setting is also the same when the -g Persist is not set. That is the -g

Persist:No setting is the default setting.

A difference-based partial reconfiguration bitstream can be created with the Bit-

Gen utility using the -r switch. This switch produces a bitstream that contains only

the differences between the input .ncd file and the original bit file.

Examples:

Generic Example for SelectMAP interface:

bitgen -g ActiveReconfig:Yes -g Persist:Yes -r < original.bit > < new.ncd >

< new.bit >

Generic Example for ICAP interface:

bitgen -g ActiveReconfig:Yes -g Persist:No -r < original.bit > < new.ncd >

< new.bit >

Test Example for SelectMAP interface:

bitgen -g ActiveReconfig:Yes -g Persist:Yes -r and test.bit and test2.ncd

and test2 partial.bit

Test Example for ICAP interface:
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bitgen -g ActiveReconfig:Yes -g Persist:No -r and test.bit and test2.ncd

and test2 partial.bit

Create a Partial Bitstream to Restore the Original Design for SelectMAP interface:

bitgen -g ActiveReconfig:Yes -g Persist:Yes -r and test2.bit and test.ncd

and test partial.bit

Create a Partial Bitstream to Restore the Original Design for ICAP interface:

bitgen -g ActiveReconfig:Yes -g Persist:No -r and test2.bit and test.ncd

and test partial.bit

These files produce a configuration file (and test2 partial.bit) that only configures

Figure A.15. -g Persist:yes setting for initial bitstream (SelectMAP)
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the frames that are different between and test and and test2. When downloading

this file, the and test configuration file MUST already be programmed into the de-

vice [10].

Since the -g Persist:Yes setting must also be required for the initial bitstream,

a designer can accomplish this by right-clicking the mouse over the “Generate Pro-

gramming File” in the “Processes” Window in “Project Navigator” interface of Xilinx

ISE (Integrated Synthesis Environment). After right-clicking, user encounters with the

”Process Properties” window, there under the “General Options” tab for the property

“Other Bitgen Command Line Options” -g Persist:Yes siwtch can be set as shown

in Figure A.15. For the ICAP interface, either -g Persist:No switch can be set or

this field can be left blank (default is set to no). As mentioned previously, in order

to be able to use partial reconfiguration through the SelectMAP mode, this step must

be done before generating the initial complete bitstream. Here it is noted that, the

settings of bitgen tool is case insensitive (e.g. -g Persist:Yes ≡ -g persist:yes).

A.3.1.2. -g PartialMask Options of BitGen for Partial Reconfiguration:. The alterna-

tive is including in the partial bitstream all the frames corresponding to the reconfig-

urable area, not just the ones that change between two designs. This can be achieved

by using the options -g PartialMask of bitgen. Here it is noted that, the -g Par-

tialMask options of bitgen is not applicable for Virtex-4 devices.

In addition to -g Persist:Yes setting, there is one another thing, which must

also be done before generating the initial complete bitstream. It is nothing more than

defining a Place And Route (PAR) guide design file which is actually used for -g

PartialMask options of BitGen.

User can accomplish this by expanding the “Implement Design” tab, and there

right-clicking the mouse over the “Place & Route” and choosing “Properties” in the

“Processes” Window in “Project Navigator” interface of Xilinx ISE. After right-clicking,

user encounters with the “Place & Route Properties” window, and there, for the prop-
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Figure A.16. Defining a PAR guide design file.

erty “(PAR) Guide Design File (.ncd)” user may type the path of your Native Circuit

Design (NCD) file as in Figure A.16. Afterwards user must also set the “PAR Guide

Mode” to “exact”. As mentioned before, in order to be able to use partial recon-

figuration with -g PartialMask options of BitGen, this step must be done before

generating the initial complete bitstream.

We use -g PartialMask options of BitGen to make sure the partial bitstream

includes all the frames for the reconfigurable area; that is, the reconfiguration process,

which is done by Difference-Based approach, can also be accomplished by -g Partial-

Mask options of BitGen, so reconfiguration with PartialMask flow can be used as

a verification method.

Since there is no information about PartialMask flow of BitGen for Spartan-

3 FPGAs, it seems that, the Spartan-3 architecture does not support PartialMask

flow . Furthermore, there is no information about PartialMask flow of BitGen

for Spartan-3 FPGAs in any Spartan-3 specific documents such as [10]. However,
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the information about PartialMask flow of BitGen for Virtex FPGAs is available

in [10] (“Virtex-II Pro and Virtex-II Pro X FPGA User Guide”). Indeed, according to

the Development System Reference Guide for Xilinx ISE 8.2i six different

PartialMask flows of BitGen are applicable for Spartan-3 FPGAs [10]. However,

it is not described in detail how PartialMask flows can be applied for Spartan-3

FPGAs, it is only claimed that Spartan-3 architecture also supports PartialMask

flow . Since PartialMask flow of BitGen for Virtex FPGAs is described in [10] in

detail, we can utilize and adapt this information for Spartan-3 FPGAs.

Table A.4. Spartan-3 bitstream column types.

Column # of Frames # of Columns Column

Type per Column per Device Address

TERM(L/R) 2 2 00

IOI (L/R) 19 2 00

CLB 19 # CLB columns 00

BRAM 76 # BRAM columns 01

BRAM Interconnect 19 # BRAM columns 10

GCLK 3 1 00

Table A.4 shows Spartan-3 bitstream column types. To be able to achieve Par-

tialMask flow of BitGen for Spartan-3 FPGAs, we firstly need to have some infor-

mation about column types and map of Spartan-3 FPGA, thus by giving appropriate

column number (column address) we can reconfigure the necessary column(s). These

columns are given in Table A.4 in detail.

The BitGen “PartialMask” feature allows users to pick which configuration columns

are included in an active reconfiguration bitstream. PartialMask bitstreams are in-

tended only for active partial reconfiguration, and must be used with the -g activere-

config:yes BitGen switch. Bitstreams that are created using this flow cannot be used

for initial configuration, since they do not include the START command or allow for

the startup sequence.
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There are six PartialMask settings:

• PartialGCLK: Adds the center global clock column to the list of columns

written to a partial bitstream. Equivalent to the PartialMask0:1 setting.

• PartialLeft: Adds all columns on the left side of the device, excluding the

global clock column, to the list of columns written to a partial bitstream.

• PartialRight: Adds all columns on the right side of the device, excluding the

global clock column, to the list of columns written to a partial bitstream.

• PartialMask0 <mask>: Adds columns in BA0 (Block Address 0: GCLK,

IOB, IOI, and CLB columns) as indicated by the hexadecimal mask to the list of

columns written to a partial bitstream.

• PartialMask1 <mask>: Adds columns in BA1 (BRAM columns) as indicated

by the hexadecimal mask to the list of columns written to a partial bitstream.

• PartialMask2 <mask>: Adds columns in BA2 (BRAM Interconnect columns)

as indicated by the hexadecimal mask to the list of columns written to a partial

bitstream.

According to the aforementioned PartialMask settings, desired columns of a

Spartan-3 FPGA can be reconfigured.
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APPENDIX B: USER MANUAL FOR PFMAP

Figure B.1. MWD application for PFMAP algorithm.

In PFMAP there are various inputs to the algorithm. The first one of these is

the application to be mapped on a NoC architecture. In Figure B.1, MWD application

is given. In order to use an application as an input to the PFMAP algorithm, Task

Traffic Graph (TTG)(see Figure B.1b) is extracted from the application block diagram

(see Figure B.1a). In a TTG, nodes represent the block components of the application

and edges represent the communication request between these nodes. Numbers on the

edges define the communication volume between task nodes in 10KBytes/second for the

given application. By using TTG of the input application, its 2-D array representation

( see Figure B.1c) is used as an input to the PFMAP algorithm. In Figure B.1c,

non-zero numbers represent coefficient of communication volumes between tasks. For

example, according to the Figure B.1c, there exists a communication flow with the

average value of 640 KBytes/second from Task Node 0 to Task Node 1, similarly 1280

KBytes/second from Task Node 0 to Task Node 4. These values are obtained from the

first row of 2-D array given in Figure B.1. That is, source task nodes are ordered in

rows, destination nodes are ordered in columns.

The second input for PFMAP is the target NoC architecture. A sample NoC

architecture and its representation as a text file can be found in Figure B.2. In Figure

B.2b, the integer value (this is 24 for our case) given in the first row represents the

number of directed links on the target NoC architecture. The rest of the lines show

the physical connections and their directions for core pairs. For example, the fifth line
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Figure B.2. A 2-D mesh 3x3 NoC architecture and its representation as a text file for

PFMAP algorithm.

in Figure B.2b represents a direct connection from Core 3 to Core 0 with a bandwidth

value of 1. For regular NoC architectures, bandwidth value is always one (i.e. defining

full bandwidth). For custom and irregular architectures, this value can be different

from one.

Figure B.3. Inputs and outputs of the PFMAP algorithm.

Inputs and output of the PFMAP algorithm is illustrated in Figure B.3. There

are six inputs and one output for PFMAP algorithm. In addition to aforementioned
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inputs there are also some numerical inputs for PFMAP. All of PFMAP inputs and

output can be summarized as follows:

(i) Application(s): This input defines the application. In PFMAP, input task

graph is represented as a 2-D double or integer array, where numbers represent

coefficient of communication volumes between tasks. An example of such a 2-D

array is given for MWD application in Figure B.1c. This 2-D array is defined

in the header file of PFMAP algorithm. If there exists multiple applications,

this input is a 3-D array, where each 2-D array element represents a different

application.

(ii) NoC Architecture: This input defines the target NoC architecture. This in-

put implemented as an external text file representing the communication links

between cores. A text file representing, 2-D regular mesh NoC architecture with

the size of 3x3 is given in Figure B.2b.

(iii) Particle Number: This number is an integer and defines the number of particles

used for PFMAP.

(iv) Iteration Number: This number is an integer and defines the number of re-

sampling iterations.

(v) Test Number: As PFMAP is a randomized algorithm, user can run the program

multiple times and takes the average of results. Hence, we used such a parameter

for PFMAP. This is also an integer number.

(vi) Number of Applications: As PFMAP can handle multiple input task graphs.

Hence, there is an integer input, which defines the number of input tasks to the

PFMAP algorithm. This input parameter is mostly used for scalability analysis

of PFMAP.

(vii) Application Mapping: This output shows the final mapping result for the

given application(s) on the target NoC architecture.

Input command format for PFMAP is given as follows:

PFMAP.exe APP IT PN TC NT NoC Architecture File Name.txt
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Here, the input parameters are given as in the following:

• APP: Input application name(s).

• IT: Number of iterations.

• PN: Number of particles.

• TC: Number of tests.

• NAPP: Number of applications.

• NoC Architecture File Name.txt: NoC architecture representation as a text file

(see Figure B.2b).

A sample input command for PFMAP is given as follows:

PFMAP.exe MWD 100 10000 100 1 dist NoC 2D Mesh Reg ROW 3 COL 4.txt

The corresponding output is kept in a text file. A sample output text file is given

in Figure B.4. Here, the mapping found in each test is represented as a configuration.

For example, in Figure B.4, first test result shows the configuration as follows:

• Task 2 is mapped onto the physical core 0

• Task 3 is mapped onto the physical core 1

• Task 11 is mapped onto the physical core 2

• Task 10 is mapped onto the physical core 3

• Task 1 is mapped onto the physical core 4

• Task 4 is mapped onto the physical core 5

• Task 7 is mapped onto the physical core 6

• Task 8 is mapped onto the physical core 7

• Task 5 is mapped onto the physical core 8

• Task 0 is mapped onto the physical core 9

• Task 6 is mapped onto the physical core 10

• Task 9 is mapped onto the physical core 11
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Figure B.4. PFMAP output text file for MWD application.
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APPENDIX C: USER MANUAL FOR PFROUT

Figure C.1. Inputs and outputs of the PFROUT algorithm.

In PFROUT there are various inputs to the algorithm. Many of them are identical

to the inputs given for PFMAP algorithm (see Appendix B). These are given as follows:

(i) Application(s): This input is the same input given in Figure B.1c for PFMAP.

(ii) NoC Architecture: This input is the same input given in Figure B.2b for

PFMAP. However, there is also a parameter, which defines the Corridor Width

(CW) of the target NoC architecture. This input parameter is defined in the

header file of PFROUT algorithm. In PFROUT algorithm, we set CW parameter

as either one or two.

(iii) Particle Number: This number is an integer and it defines the number of

particles used for PFROUT.

(iv) Iteration Number: This number is an integer and it defines the number of

re-sampling iterations.

(v) Test Number: Likewise PFMAP, PFROUT is also a randomized algorithm,

user can run the program multiple times and takes the average of results. Hence,

we also used such a parameter for PFROUT. This is also an integer number.

(vi) Number of Applications: Likewise PFMAP, PFROUT can handle multiple

input task graphs. Hence, there is an integer input, which defines the num-

ber of input tasks to the PFROUT algorithm. This input parameter is mostly
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used for scalability analysis of PFROUT (i.e. for running multiple TGFF3x3 to

TGFF10x10 applications).

(vii) Routing Count Number: In path creation from a source node to a destina-

tion node, there are switches and routers. In PFROUT, by considering gener-

ated wavefront and the capacity of next router/switch, the direction is deter-

mined. At this step, if there exist multiple directions with the same cost, we

always control the availability of the directions. Here, RoutingCountNumber

is a non-negative integer and it defines the number of routing iterations for a

given mapping. If RoutingCountNumber is set to zero then the control of the

availability of the directions is always in the order of North-East-South-West. If

RoutingCountNumber is not zero, choosing of next router/switch in path cre-

ation is controlled each time in random order (e.g. South-East-West-North). If

RoutingCountNumber is set to N (e.g. N=10), then findRouting subroutine

runs N times with random orders. In each run of findRouting, PFROUT tends to

find a different routing for the same mapping. At the end, the best one of these

routings is accepted as a solution.

(viii) Application Routing and Mapping: This output shows the final routing and

mapping result for the given application(s) on the target NoC architecture. In

addition to the mapping property of PFMAP, PFROUT also gives the routing

information between communicating nodes on the given architecture.

Input command format for PFROUT is given as follows:

PFROUT.exe APP IT PN RC TC NT NoC Architecture File Name.txt

Here, the input parameters are given as in the following:

• APP: Input application name(s).

• IT: Number of iterations.

• PN: Number of particles.

• RC: Routing count.

• TC: Number of tests.
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• NAPP: Number of applications.

• NoC Architecture File Name.txt: NoC architecture representation as a text file

(see Figure B.2b).

A sample input command for PFROUT is given as follows:

PFROUT.exe TGFF3x3 10 100 0 10 1 dist NoC 2D Mesh Reg ROW 3 COL 3.txt

Figure C.2. PFROUT output text file for a synthetic TGFF3x3 application for

CW=1.

The corresponding output is kept in a text file. A sample output text file is

given in Figure C.2. Here, the mapping found for given applications is represented as

a configuration. For example, in Figure C.2, best configuration is given as follows:
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• Task 1 is mapped onto the physical core 0

• Task 0 is mapped onto the physical core 1

• Task 2 is mapped onto the physical core 2

• Task 8 is mapped onto the physical core 3

• Task 5 is mapped onto the physical core 4

• Task 3 is mapped onto the physical core 5

• Task 7 is mapped onto the physical core 6

• Task 6 is mapped onto the physical core 7

• Task 4 is mapped onto the physical core 8

After giving mapping, PFROUT gives the routing between core pairs. Here, to identify

paths, they are marked by using core numbers as follows:

PathMarkV alue = (SourceCoreID× 1000) +DestinationCoreID (C.1)

For example, the 14th path given in Figure C.2 defines the connection from source core

2 to destination core 7.
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