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Abstract—In this paper, image processing algorithms designed
in Zynq SoC using the Vivado HLS tool are presented and
compared with hand-coded designs. In Vivado HLS, the designer
has the opportunity to employ libraries similar to OpenCV, a
library that is well-known and wide used by software designers.
The algorithms are compared in terms of area resources in
two conditions: using the libraries and not using the libraries.
The case studies are Data Binning, a Step Row Filter and a
Sobel Filter. These algorithms have been selected because they
are very common in the field of image processing and they
have high computational complexity. The main benefit of the
Vivado HLS tool is the reduction in time-to-market. On the
other hand, when a software designer hand-codes the design,
the use of image processing libraries similar to OpenCV helps to
reduce development time even further because software designers
are familiar with them. However, using these kinds of libraries
significantly increases the necessary FPGA resources.

I. INTRODUCTION

The complexity of today’s hardware designs is growing
quickly. Furthermore, this complexity has led to an increase in
the lines of code in a Hardware Description Language (HDL)
design. [1] indicates that digital designs on the order of one
million gates require three hundred thousand lines of Register
Transfer Level (RTL) code.

Although complexity is increasing, time-to-market must be
reduced in order to improve design productivity. Especially in
the case of FPGA platforms, time-to-market is critical since
long cycles of chip design and manufacturing are avoided.
Therefore, FPGA designers may accept an increase in power
or cost in order to cut down design time [2].

The main goal of High Level Synthesis (HLS) tools is to
reduce the time-to-market of the design. High Level Synthesis
is not a novel concept. In the 1980s and early 1990s, a number
of HLS tools were built for researching and prototyping:
ADAM [3], HAL [4], MIMOLA [5], Hercules/Hebe [6] and
Hyper/Hyper-LP [7]. At that time, the HLS methodology had
not achieved wide acceptance. However, in the 1990s with
improvements in RTL synthesis tools from the major EDA
vendors (Behavioural Compiler from Synopsys [8], Monet
from Mentor Graphics [9], Visual Architect from Cadence
[10]), the first commercial HLS systems started to appear.
Since then, HLS tools have continued to evolve focusing on
using widely-adopted languages such as C/C++.

A large number of FPGA designs are developed using HLS
tools. Moreover, we can find examples in different fields of
application such as 3G/4G wireless systems [11], aerospace

applications [12] and image processing [13] in real time
environments.

In the image processing field, when there are intensive pixel-
level operations, these kinds of FPGA designs are considered
suitable for hardware implementation since hardware allows
us to parallelize and thus accelerate processing. Different
hardware implementations in the image processing field have
been proposed in [14], [15], [16], [17], [18], [19], [20].

On the one hand, [14] and [15] present Lane Departure
Warning Systems where the received image is preprocessed
in FPGA. Both of them present a system based on hardware
and software codesign. In [14], only the image is captured
in FPGA which greatly reduces the image capture processing
time with respect to the software capture. However, in [15]
the capture and a preliminary filtering of the image are sent
to the FPGA. In this case, the selected platform is Xilinx’s
Zynq SoC, which has two main parts: the processing system
and the Programmable Logic which is a Series 7 FPGA.
These two parts can communicate with each other through the
standard AXI interface, thus facilitating hardware and software
codesign.

On the other hand, [16], [17], [18], [19], [20] propose
different implementations of Edge Detection in FPGA in order
to achieve real-time systems.

In this paper, we present different implementations of
common image processing algorithms that have high com-
putational complexity (Step Row Filter, Data Binning, Sobel
Filter) and that should be implemented in hardware in or-
der to parallelize processing and achieve real-time systems.
Moreover, these algorithms are being used to get Advanced
Driver Assistance Systems in vehicles. The case studies of
interest have been implemented over the Zynq XC7Z020
platform.This device is based on the Artix-7 technology, which
is the cheapest one among the Series 7 FPGAs from Xilinx.
We compare hand-coded implementations with Vivado HLS
designs in order to discuss their benefits and drawbacks.

The remainder of this paper is organized as follows. In
Section II, the features of the Vivado HLS tool are described.
In Section III, several HLS implementations in the image
processing field are presented as HLS case studies, and they
are then compared with hand-coded designs. In this case, the
analyzed case studies are the Step Row Filter and the Data Bin-
ning implementations. Moreover, HLS implementations that
have used specific image processing libraries are compared
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to those that have not. This analysis is done for the Data
Binning and the Sobel Filter implementations. Finally, some
conclusions are drawn in Section IV.

II. VIVADO HLS

Vivado HLS is Xilinx’s HLS engine. Designers use C, C++
or SystemC in Vivado HLS, and the tool generates VHDL,
Verilog and SystemC RTL descriptions from the HLS model
by taking into account the input constraints. This Xilinx tool is
totally integrated with the Xilinx design methodology and the
generated description can be packaged as IP blocks that can
be imported into the Vivado Design Suite for Xilinx Series 7
device implementation [22].

Vivado HLS has different directives and pragmas for op-
timizing the hardware of the generated design according
to specifications, and it allows features such as the design
interfaces, the required parallelization level and the data types
to be designed.

The design methodology of Vivado HLS tool starts with the
definition of functional specifications and input constraints.
From these inputs, designers develop the C/C++ model and
use pragmas and/or directives to try to fulfil the timing and
area constraints. Then, the C/C++ testbench is designed in
order to ensure the model works using different test vectors
to obtain the corresponding outputs with C/C++ simulation.
Once the C/C++ model is functionally correct, the HLS
synthesis generates the RTL description.This RTL code can
be verified with C/RTL co-simulation by using the previously
defined testbench and test vectors. If the C/C++ simulation
or the C/RTL co-simulation does not work as expected, the
C/C++ model must be modified. Finally, designers can know
whether the RTL design complies with the timing and area
constraints by observing the HLS synthesis results. When the
users’ constraints are not fulfilled, designers should modify
the pragmas or directives and repeat all the following steps.

III. CASE STUDIES

In this Section, several typical image processing algorithms
are presented as case studies of HLS implementations. Some
of them are also hand-coded in order to compare with the
HLS results. To complete the HLS comparison, some HLS
implementations have been carried out using specific HLS
libraries for image processing similar to the well-known
OpenCV. Using these kinds of libraries facilitates the design
of image processing algorithms and reduces design time even
further, especially when the developer is a software expert.

A. Step Row Filter Implementation

The Step Row Filter is a 1D convolution filter that operates
on each row of the original image. Its aim is to determine
which pixels of the image likely represent lane markings
inside a Lane Departure Warning System. The filter function
is defined as: y(r, c) = 2∗x(r, c)−x(r, c− tau(r))−x(r, c+
tau(r)) − abs(x(r, c − tau(r)) −x(r, c + tau(r))), where
r is the row number, and c is the column number. x(r, c)
is the pixel value at (r, c), and tau(r) is the tau value for

the given row (more details can be found in [21]). In this
case, r = 0...239 and c = 0...319. The filter generates high
values for pixels whose intensity value is higher than its lateral
neighbours (at ±tau(r)) and these side values are similar.
This provides high values for stripes like lane markings and
generates very few false positives for other bright visual
patterns that might appear in vehicles or in the road.

The Step Row Filter is pixel-level processing that consumes
most of the total computational time of a Lane Departure
Warning System algorithm [15]. Therefore, implementing the
Step Row Filter in hardware, in this case in a FPGA, is suitable
in order to accelerate processing.

Prior to implementing the hand-coded algorithms, a Matlab
model was designed in order to ensure that the design’s
functionality is correct. Figure 1 shows a scheme of the hand-
coded Step Row Filter module data–path operations. Each row
of the image is stored in the FPGA. The module uses two MAC
(multiplier accumulator) units in order to process two pixels
in parallel. The selected pixels will be read from the Block
RAMs depending on the value of tau, which is an FPGA
input vector and they will be multiplied by the coefficients
stored in the Look-Up-Table (LUT) called COEFs applying
the corresponding mask (coeff 1=11FFFF, coeff 2=11FFFF,
coeff 3=000002). The values of these coefficients (-1, -1, 2)
are deduced from the filter function defined at the beginning
of this Section. Each MAC unit accumulates the results from
multiplying three pixels by the three coefficients. To the result
of the MAC unit, the result of subtracting [i − tau] from
[i + tau] is added. The sign of this sum depends on the
sign of the subtraction result. Finally, data are compared
against a threshold which is another FPGA input. Thus, the
output is limited: if data are higher than the threshold (in this
case the threshold was set at 90 by the SW designers), the
output will be ”FF” and otherwise, it will be zero. All these
operations are controlled by a Finite State Machine which is
the responsible for doing the sequence of operations in the
correct order.

Table I summarizes the FPGA resources and the processing
time of hand-coded and Vivado HLS implementations of a
Step Row Filter module for a 320(H)x240(V) image and
8 bits per pixel. Under the IAB project, this hand-coded
implementation has been proved in a real–time environment.

The Step Row Filter hand-coded implementation employs
two DSP48s to process the filtering of two pixels in parallel.
This custom filter is processed per row. Thus, in the FPGA,
only N pixels for the input, N being the number of rows in the
image, and N pixels for the output need to be stored in Block
RAMs. Two RAM18E1s are required: one for the input, and
one for the output.

In Vivado HLS, the same model that was designed previ-
ously in Matlab was developed in C/C++. The arguments of
the C/C++ model are the input and output ports of the RTL
generated by the tool. The Step Row Filter has two inputs :

unsigned char ptSrc[240][320]
unsigned char tau[240]
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Fig. 1. Scheme of the hand-coded Step Row Filter module data–path operations

And one output:

unsigned char ptDst[240][320]

In order to optimize HDL generation, pragmas and directives
were used. The following pragma was included in the C/C++
code. This was used for several variables that take part of
arithmetic operations such as products and sums. Thus, DSP48
resources in the FPGA are employed to operate with those
variables instead of using LUTs.

#pragma HLS RESOURCE variable=var_name
core=AddSub_DSP

As Table I shows, by using this pragma, the number of LUTs
are reduced and two DSP48 are instantiated in the generated
RTL code instead of using LUTs for the arithmetic operations.

In this case, no interface pragmas have been used. There-
fore, the input (ptSrc, tau) and output (ptDst) interfaces have
a memory interface by default.

The time needed to develop the HLS design is reduced by
approximately six days relative to the hand-coded design.

Furthermore, as shown in Table I, unlike hand-coded design,
HLS design does not use Block RAMs. Therefore, HLS
design needs more registers and LUTs than the hand-coded
implementation. The processing time of the hand-coded design
working at 200 MHz is 0.95 ms. However, the minimum
processing time of the HLS design working at the same clock
frequency is 4.5 ms. In spite of this fact, it can be said that
the generated design is faster than a SW solution. In [15], the
SW solution proposed for the Step Row Filter requires 10.530
ms.

Figure 2 shows the 320(H)x240(V) input image from the
Step Row Filter module and the 320(H)x240(V) output image
from the filter in the different stages in HLS: C model
simulation and C/RTL co-simulation.

TABLE I
STEP ROW FILTER MODULE IMPLEMENTED IN XC7Z020

RTL Designer SW Designer
(hand-coded) (Vivado HLS)

Dev. Time (man-days) 10 4
Proc. Time (ms) 0.95 4.5
Clock Frequency (MHz) 200 200
Number of Slice Registers 145 370
Number of Slice LUTs 120 414
Number of Block RAMs
(RAMB18E1s) 2 -
DSP48E1s 2 2

(a) Input of the Step Row Filter
module

(b) Output of the Step Row Filter
module

Fig. 2. Results of Step Row Filter simulations

B. Data Binning Implementation

The Data Binning function is defined as: y(r, c) = 1/4 ∗
x(2 ∗ r− 1, 2 ∗ c− 1) + 1/2 ∗ x(2 ∗ r− 1, 2 ∗ c) + 1/2 ∗ x(2 ∗
r, 2 ∗ c− 1)+ 1/4 ∗x(2 ∗ r, 2 ∗ c), where r stands for row and
c for column. x(r, c) is the pixel value at (r, c).

The Data Binning module is connected to an image sensor
in order to receive the measured image in RAW format (
[15]). Once the image sensor is calibrated, it starts the normal
operation shown in Figure 3. The timing diagram of Figure 3
presents the acquisition of a 640(H)x480(V) image. A pulse
in the VSYNC signal indicates that a new frame starts. HREF
is a logic one during 640 cycles of PCLK. A rising edge



in the PCLK signal marks that a pixel is valid. Thus, 640
horizontal pixels are obtained. To complete the image capture,
480 periods of HREF are needed. Implementing the Data
Binning module in hardware, in this case in an FPGA, is
suitable in order to accelerate processing [14].

The Data Binning module receives the camera data and
processes the data binning in order to achieve the desired
320(H)×240(V) image (in this case r = 0...239, c = 0...319)
from the received 640(H)x480(V) image. When two rows of
the image have been received, the 320 pixels obtained are
stored in Block RAMs of the FPGA.

The Data Binning module has been also hand-coded. Under
the IAB project, this design has been implemented in a real–
time environment.

Figure 4 shows a scheme of the Data Binning module
operations. As can be deduced from the algorithm described
at the beginning of this section, the design has two constant
(1/4 and 1/6) products (values selected by the high–level SW
team). We have different control blocks implemented in the
design. Control State block determines the sequence of the
required operations: pixels acquisition, processing per row and
storage of the processed image. The stages blocks are used to
carry out the different processing according to the row because
the image pattern is different for even or odd rows.

This design has a FIFO of size N, where N = 2n and 2n is
equal to or greater than c. In this case, the maximum value of
c is 320, and thus n = 9 in order to store all the elements in a
row. The output pixels are grouped in fours so the output size
will be 32 bits in order to send the data through a standard
communication interface such as the AXI interface.

This module receives the camera data and processes the
data binning in order to achieve the desired 320(H)×240(V)
image from the received 640(H)x480(V) image. In Vivado
HLS, similar functionality has been implemented in order to
achieve the same purpose.

Table II summarizes the FPGA resources and the processing
time of the hand-coded and Vivado HLS implementations of
the Data Binning module for a 640(H)x480(V) image and 8
bits per pixel.

In the hand-coded Data Binning module, the pixels to be
processed are stored using Slice Registers. Slice LUTs are
used to implement logic and also memory as shift registers in
order to store the results of the binning operations.

HLS offers libraries for image processing, similar to
OpenCV, which facilitates design by reducing development
time even further. In this case, the data binning opera-
tion was implemented by using the Resize function of the
hls video imgproc library. This function uses bilinear inter-
polation to reduce the size of the input image to the size of
the output image.

In this case, the input and output images of the C/C++ model
pass through the AXI streaming interface in order to make it
easier to employ the hls video imgproc library. Therefore, the
following pragmas are included:

#pragma HLS INTERFACE axis port=ptSrc

#pragma HLS INTERFACE axis port=ptDst

The AXI streaming image needs to be converted into Mat
format, which the Resize function requires as input, via the
AxiVideo2Mat function. The output image is in Mat format,
and it is converted back to an AXI streaming image via the
Mat2AxiVideo function.

As Table II shows, the FPGA resources using the
hls video imgproc library increase significantly with respect
to the hand-coded solution. On the other hand, the de-
velopment time of the HLS design is reduced by around
ten days with respect to the hand-coded design. In Table
II, the total resources including the AxiVideo2Mat, Resize
and Mat2AxiVideo functions, are presented. However, the
resources for the AxiVideo2Mat and Mat2AxiVideo functions
are only 387 LUTs and 318 FFs. Therefore, the majority of
the resources corresponds to the Resize function.

The necessary processing time for our system is around 2
ms. The HLS design, working at a clock frequency of 160
MHz, achieves the target processing time. Taking this spec-
ification into account, the FPGA resources are considerably
higher than the results for the hand-coded design.

TABLE II
DATA BINNING MODULE IMPLEMENTED IN XC7Z020

RTL Designer SW Designer
(hand-coded) (Vivado HLS-OpenCV)

Dev. Time (man-days) 12 2
Proc. Time (ms) 1.89 2.05
Clock Frequency (MHz) 200 164
Number of Slice Registers 121 20379
Number of Slice LUTs 196 18136
Number of Block RAMs
(RAMB18E1s) - 6
DSP48E1s - 36

C. Sobel Filter Implementation
The Sobel Filter is frequently used in image process-

ing systems. This filter has great computational complexity.
Therefore, it is important to optimize its implementation in
order to fulfill the timing specifications of Real-Time systems.
Implementations of Sobel filters have been proposed for FPGA
platforms in [16], [18], and [17].

The Sobel operator is a discrete differentiation operator
which computes an approximation of the gradient of an image
intensity function. This is achieved by convolving each pixel
value with an odd size kernel matrix in both the horizontal and
vertical directions. Finally, an approximation of the gradient
is calculated at each point of the image by combining both
convolution results.

A Sobel Filter with a kernel size of 3 was imple-
mented using Vivado HLS for different image lengths, namely
320(H)x240(V) and 1920(H)x1080(V), and with and without
using specific HLS libraries similar to OpenCV.

Table III summarizes the FPGA resources and the process-
ing time of Vivado HLS implementations with and without the
hls video imgproc library from the Sobel Filter module for a
320(H)x240(V) image.
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Fig. 4. Scheme of the hand–coded Data Binning module operations

A custom design (without specific libraries) Sobel Filter
was developed in HLS by applying pragmas to improve the
processing time:

#pragma AP loop_flatten off
#pragma AP dependence variable=&buff_A
false
#pragma AP PIPELINE II=1

The loop flatten off pragma avoids flattening nested loops.
The PIPELINE pragma permits the concurrent execution of
operations inside the loop and the dependence pragma is
needed in order to eliminate dependence with respect to the
buff A variable, and thus, it allows the pipeline.

The Sobel Filter was also implemented by applying the
Sobel function from the hls video imgproc library in direc-
tions x and y over the same initial image. Before applying
the Sobel function, a duplicate function is needed to copy the
input image to two output images for the point of divergence
for two data paths. After calculating Sobel operations in both
directions, the addweighted function was used to compute the
weighted per-element sum of the two images that resulted from
the Sobel functions.

In both Sobel C/C++ models, the input and output images
employ the AXI streaming interface. At a clock frequency
of 200 MHz, the FPGA resources that use the specific HLS
library increase considerably with respect to the HLS custom
design as shown in Table III. On the other hand, the devel-
opment time of the HLS design which uses specific image

processing libraries is reduced by around eleven days with
respect to the HLS custom design.

TABLE III
SOBEL FILTER MODULE IMPLEMENTED IN XC7Z020 FOR

320(H)X240(V)

RTL Designer SW Designer
(Vivado HLS) (Vivado HLS-OpenCV)

Dev. Time (man-days) 12 1
Proc. Time (ms) 0.398 0.498
Clock Frequency (MHz) 200 200
Number of Slice Registers 748 25439
Number of Slice LUTs 1111 21946
Number of Block RAMs
(RAMB18E1s) 3 18
DSP48E1s 2 138

The FPGA resources used during the Sobel Filter imple-
mentation to process a 320(H)x240(V) or a 1920(H)x1080(V)
image are the same. However, the processing time is affected.
Working at 200 MHz, the HLS custom design needs 0.398 ms
to process a 320(H)x240(V) image and 10.44 ms to process a
1920(H)x1080(V) image.

Figure 5 shows the 320(H)x240(V) input image for the
Sobel module and the 320(H)x240(V) output image of the
filter in the different stages in HLS: C model simulation and
C/RTL co-simulation.

IV. CONCLUSION

In this paper, we implemented common image processing
algorithms designed in Zynq SoC using Vivado HLS in order



(a) Input of the Sobel Filter mod-
ule

(b) Output of the Sobel Filter mod-
ule

Fig. 5. Results of Sobel Filter simulations

to reduce the time-to-market of the design process. Vivado
HLS offers libraries similar to OpenCV, a well-known library
that is widely used by software designers. The presented
algorithms were implemented with and without these libraries
and the area, processing time results and design time were
compared and discussed. The case studies presented were the
Data Binning, Step Row Filter and Sobel Filter modules. These
algorithms were selected because they are very common in
the field of image processing and have high computational
complexity. As can be seen, the main advantage of this tool
is the reduction of time-to-market. When a software designer
is responsible for the design, the use of image processing
libraries similar to OpenCV helps to reduce the development
time even further because software designers are familiar with
them. However, using these kinds of libraries significantly
increases the FPGA resources needed.
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