
Small Lightweight Hash Functions in FPGA
Carlos Andres Lara-Nino, Miguel Morales-Sandoval, and Arturo Diaz-Perez

CINVESTAV Campus Tamaulipas. Victoria, Tamaulipas. México.
Email: {clara, mmorales, adiaz}@tamps.cinvestav.mx

Abstract—This paper presents hardware realizations of two
lightweight hash function families on FPGA: SPONGENT and
LHash. The assessment provided for both cryptographic primi-
tives is in terms of area, performance, and energy consumption,
when implemented in LUT-4 and LUT-6 FPGA technology for
equivalent security levels. To the best of our knowledge, this paper
reports the most compact SPONGENT FPGA implementation and
the first FPGA implementation of LHash.

Index Terms—Lightweight Hash Function, Low-area, Low-
energy, FPGA.

I. INTRODUCTION

Security is a critical issue in the envisioned applications
of the Internet of Things (IoT) such as in sensing, stock
monitoring, mobile health, and military applications, where
sensitive information is often being processed or transmitted
by the underlying constrained devices.

Traditionally, cryptography provides the means to secure
sensitive data. However, the resources required by crypto-
graphic algorithms to operate often exceed the capabilities of
IoT devices in regards to area and power. Hence, lightweight
cryptography has been proposed as an alternative [1]–[3].

Hardware realizations of cryptographic algorithms are in-
tended to offload computations from the main processor, being
ASIC and FPGA the main alternatives. Although ASIC imple-
mentations are faster than those based on FPGAs, the latter are
sometimes preferred over ASIC for cryptographic applications
due to their inherent properties of reconfigurability, short time
to market and in-house security [4].

In this paper we tackle the implementation of lightweight
hash functions on FPGA. These primitives have been utilized
to provide integrity and authentication security services.

We selected the hash function SPONGENT, which has the
smallest area recorded in ASIC [5]. We also consider in
this study LHash, which is a high-performance and small
cryptographic hash function. Although the implementation of
hash functions in FPGA has been addressed before [6], the
difference in our work is that we seek a broader, multidimen-
sional implementation assessment that takes into consideration
performance and energy consumption analysis. We consider
this requirement crucial as our proposed hash modules are
intended to operate in resource constrained environments (i.e.,
the IoT).

The rest of the paper is structured as follows. Section II
presents details about the hash algorithms under study. Section
III describes the proposed hardware architectures. Section
IV describes our evaluation methodology and presents our
findings. Section V concludes the paper.

II. HASH FUNCTIONS

A hash function is a function that compresses data. It takes
an almost arbitrary-length message as input and produces a
digest of fixed-length. A cryptographic hash function features
resistance to collision, pre-image and 2nd pre-image attacks
[7]. Secure hash functions generally impose high overhead on
the underlying system.

A. SPONGENT

SPONGENT is a family of lightweight hash functions with
hash size n of 88, 128, 160, 224, and 256 bits based on
a sponge construction [8] instantiated with a PRESENT-type
permutation [5].

We denominate STATE to the internal data block undergoing
processing. The input message blocks are XOR-ed with the
r rightmost bits of the STATE. The same r bits are used to
generate the hash output. The b bits in the STATE are processed
with an R rounds internal transformation. The SPONGENT
family has five parameters (n, b, c, r, R) to instantiate a
specific hash function, these are shown in Table I.

SPONGENT-88 has pre-image resistance of 280, second
pre-image resistance of 240, and collision resistance of 240.
Even though these security levels can be considered low for
cryptography standards, they can be of utility for constrained
applications. This is based on the assumption that certain
applications would chose to forfeit some security in the pursuit
of efficiency.

SPONGENT follows three steps: initialization, absorbing, and
squeezing. Its internal transformation SPONGENT-f [r + c],
denominated πb : Fb

2 → Fb
2, is a R-round transformation of a

b-bit data block, as presented in [5].
The internal transformation π88 consists of the functions

sBoxLayerb and pLayerb and the finite addition of a
Linear-Feedback Shift Register (LFSR) value lCounterb(i)
to the state.

B. LHash

LHash is based on the sponge construction instantiated with
a Feistel round transformation. It is a family of lightweight
hash functions with hash size n of 80, 96, and 128 bits.

If r is the length of the input message blocks and c is the
size of the capacity, then b = r + c is the size of the fixed
transformation LHash-f [r + c] and r′ is the output size for
each output digest block. The different parameterizations of
LHash are defined by four characteristics (n, b, r, r′). These
parameters are presented in Table I.

978-1-5386-2311-4/18/$31.00 c©2018 IEEE

2018 IEEE 9th Latin American Symposium on Circuits & Systems (LASCAS)

TABLE I
DIFFERENT CONFIGURATIONS OF SPONGENT AND LHASH. ASIC IMPLEMENTATION RESULTS FROM RELATED WORKS.

Hash function Ref. n
(bits)

b
(bits)

c
(bits)

r
(bits)

r′

(bits) R
Security(bit) Area

(GE)
Thr.

(kbps)PRE 2nd PRE COL
SPONGENT-88 [9] 88 88 80 8 8 45 80 40 40 738 0.81
LHash-96 [10] 96 96 80 16 16 18 80 40 40 817 2.40

LHash-96 has pre-image resistance of 280, second pre-
image resistance of 240, and collision resistance of 240, which
matches the security levels of SPONGENT-88 thus enabling a
fairer comparison.

LHash follows three steps: initialization, absorbing, and
squeezing. LHash-f [r + c] stands for a fixed internal permu-
tation Fb (b=96 or 128). It is constructed using an 18-round
Feistel structure. The round transformation is detailed in [10].

The round function of LHash represents a permutation
where the b-bit input is first split into two halves X1||X0.
Then, for i = 2, 3, . . . , 19, it follows Xi = Gb(Pb(Xi−1 ⊕
Ci−1)) ⊕ Xi−2. At the end, X19||X18 is the output of the
permutation.

III. ARCHITECTURAL DESIGN

This section describes the hardware architectures proposed
in this paper to implement the selected hash functions.

A. SPONGENT

The architecture developed for SPONGENT-88 is based on
a hardware loop with a single register. In the initial phase the
STATE value is the all zeros word. At the first round the input
block is XOR-ed with the value in the register. At each round
the register is then XOR-ed with the contents of an LFSR and
processed by the substitution and permutation layers. Figure 1
illustrates this design, note that the LFSR is shown as lC88.

Fig. 1. Hardware architecture for SPONGENT-88.

The LFSR counter is generated by a 6-bit register clocked
each active round. Its value is XOR-ed with the least signifi-
cant bits of the STATE and its reversed value is XOR-ed with
the STATE’s most significant bits. Figure 1 shows two LFSR,
however, that is only for illustrative purposes since in practice
a single one is used.

The substitution layer is formed by 22 4-bit substitution
boxes which process the STATE in parallel. A common strategy
for minimizing area is to reduce the number of substitution
boxes, but this has a linear increase in the latency. A round

of SPONGENT-88 requires 45 cycles. By reducing the number
of substitution boxes to half, the latency would be doubled.
Since this trade-off affects the latency and energy consumption
considerably, that strategy was not implemented.

The permutation layer is a simple wiring which can be
straightforwardly implemented with little cost.

The output is taken directly from the output of the register.
To reduce the switching activity at the output, we opted to
include a mask, thus improving the energy consumption at
the cost of a few additional hardware resources.

The latency calculation for this architecture is presented in
Table II. From left to right, the columns in the Table represent:
the architecture, the cycle count required to input a 256-bit
message, the cycle count required to input the padding, the
cycle count required to produce the hash output of length n
(88 or 96 bits), and the total latency.

TABLE II
LATENCY CYCLES FOR DIGEST GENERATION

Architecture Absorb
256-bit

Absorb
padding

Squeeze
n-bits Total

SPONGENT-88 1440 45 495 1980 cycles
LHash-96 288 18 108 414 cycles

B. LHash

The Feistel structure utilized in LHash is more complex
than the one in SPONGENT. We decided to divide the main
register in two smaller ones to represent the partitioning of
data in the internal round. The input message is always XOR-
ed with the lower part of one of these registers, and the output
is generated from the same position. At each round, the value
of one of the two registers is XOR-ed with a round constant
and processed by the permutation, substitution, and Maximum
Distance Separable (MDS) layers. This result is then XOR-ed
with the original contents in the register and returned to the
same register. Figure 2 illustrates this architecture.

The round constant is formed from a 5-bit LFSR expanded
to 16-bit. These 16 bits are only wired and not stored to reduce
resource usage. The round constant is XOR-ed with the most
significant bits of the active STATE.

The permutation layer is formed by four 12-bit permutations
applied in parallel to the 48-bit STATE. This is also a wiring.

The substitution layer contains 12 4-bit substitution boxes
to process the active STATE in parallel.

The number of substitution boxes required in the LHash
implementation can be reduced, i.e. halved, at the cost of an
increased latency. Since LHash-96 requires fewer cycles per
round than SPONGENT-88 the trade-off might be considered

P96

msg 0n

+
0n

hash

0n

48

16

16

16 16

16 16

48

4
8

Ci

S0
48

48

48

32

48

48

48

32

48

48

P96

P96

P96

A

S

S

S

G

T

s
s
s
s

s
s
s
s

s
s
s
s

B B B B

A
B B B B

A
B B B B

S
T
A
T
E
0

S
T
A
T
E
1

16

+
+

+

48

Fig. 2. Hardware architecture for LHash-96.

adequate. We believe that to achieve optimal results it would
be required to streamline the design and use a datapath with
constant width. This means reducing the permutation and
MDS layers width as well. As previously pointed out, the
permutation layer is made of four smaller permutations thus
it can be reduced if required. The MDS layer, however, is
made of three 16-bit transformations. This means it cannot be
reduced to the same width of the substitution and permutation
layers. Since it is not possible to obtain a unified datapath with
an optimal number of cycles per round for LHash-96, these
area optimizations were discarded. The reader should note that
this optimization is achievable for other instances of LHash.

The MDS layer represents the application of three 16-bit
A functions in parallel over the STATE. These functions are
mostly wires and XOR gates plus six 4-bit field multipliers.
Since one of the multiplicands is a constant, the multiplica-
tion/reduction can also be wired. Each 16-bit function requires
11 1-bit XOR operations. In total, 33 XOR gates are utilized
in this layer.

The output is taken directly from one of the registers. In the
same fashion as it was made for the SPONGENT architecture, a
mask is added at the output to mitigate the switching activity.

Table II presents the latency details for this architecture.

IV. EXPERIMENTAL EVALUATION

A. Implementation strategies

The proposed designs were described using VHDL. Re-
duced design complexity was the main strategy to achieve
small implementation sizes. The main elements in each design
were constructed as modules, interconnected with a minimal
number of multiplexers, and controlled by wired FSMs.

An FSM was used as main controller for each hash archi-
tecture. This unit generated the enable signals for routing the
data through the datapath. Since in sponge constructions the
same internal transformation is applied to process the input
and to produce the output, another FSM was used as round
controller. The round controller required a small counter to
determine the number of iterations applied over the state.

External signals were used to indicate the desired input
and output lengths. This allowed both the flexibility in the
incorporation of the hash module to different architectures and
the reduction of the control complexity.

B. Experimental setup

a) Environment: The architectures were synthesized for
Xilinx FPGAs using the ISE Design Suite 14.3. As computing
platform, two low cost development boards were considered.
The Spartan-3 (xc3s50) was used to evaluate the architectures
in LUT-4 FPGAs. For LUT-6 FPGAs, the Spartan-6 (xc6slx16)
was considered.

b) Synthesis criteria: The synthesis process was config-
ured with Area as Optimization Goal and High as Optimization
Effort for all the implementations. The use of FPGA embed-
ded RAM/ROM resources was disabled to achieve a fairer
comparison with the state of the art.

c) Configurations: Two designs were studied:
SPONGENT-88 and LHash-96. Each one includes I/O
mechanisms that allow using the hardware module as an
independent core. Each implementation was made targeting a
specific FPGA board to generate the physical constraints file.
The source files for each implementation are available upon
request to the lead author.

d) Metrics: The metrics of interest are the implementa-
tion size, performance and energy consumption. Slices (SLC)
are used as area units, but the results in LUT and Flip-Flop
(FF) usage are also presented. Performance is expressed in
terms of latency and throughput. For energy consumption,
we provide the calculation of total power and the energy
required to produce a digest. Two derived metrics are used: the
throughput-per-slice is a relation of the implementation size
and the performance; the energy-per-bit is the estimation of
energy spent to process the input message.

In this work, we consider a frequency of 100 KHz to
compute performance and energy consumption, which is a
value commonly used in the literature [11].

The maximum throughput (Thr) is a function of the
maximum frequency (FMAX), the latency in cycles (LAT),
and the message size (BSIZE). It is computed as Thr =
FMAX×BSIZE

LAT . The throughput-per-slice (Thr/SLC) is calculated
as Thr/SLC = Thr

SLC .
The tool Xilinx XPower Analyzer 14.3 was utilized to

estimate the static, dynamic, and total power (POW) of each
implementation for a frequency of 100 KHz. The software
reported high overall confidence levels for all the estimations.

The energy (ENE) spent by an implementation to process
a message, considering an operational frequency of 100KHz,
is calculated as ENE = POW×LAT

100 KHz . The energy-per-bit is
computed as ENE/bit = ENE

BSIZE .

C. Implementation results

The implementation results for the architectures under eval-
uation are shown in Table III, which also shows a compar-
ison with the state of the art in FPGA implementations of
SPONGENT with the same security level. Table IV features
implementation results for power and energy consumption.

The implementation of SPONGENT-88 achieved smaller FF,
LUT, and SLC count than LHash for the two FPGAs utilized.

In regards to throughput, for a constant frequency of
100KHz, LHash-96 outperformed SPONGENT by approxi-

TABLE III
RESOURCE USAGE AND PERFORMANCE FOR THE HASH FUNCTIONS UNDER EVALUATION. RESULTS OBTAINED FROM PLACE-AND-ROUTE.

Work Design Message
(bits)

Digest
(bits) r r’ Internal

rounds FF LUT SLC FMAX
(MHz)

LAT
(cycles)

Thr
(Mbps)

Thr*
(Kbps)

Thr*/SLC
Kbps/Slice

xc3s50-5cp132
[11] SPONGENT-88 256 88 8 8 45 - - 116 90 1980+ 11.60 12.93 0.11

This work. SPONGENT-88 256 88 8 8 45 104 143 74 227 1980 29.32 12.93 0.17
This work. LHash-96 256 96 16 16 18 110 380 203 97 414 60.12 61.84 0.30

xc6slx16-3csg324
[6] SPONGENT-88 256 88 8 8 45 - - 26 309 1980+ 39.95 12.93 0.50

This work. SPONGENT-88 256 88 8 8 45 104 71 20 302 1980 39.03 12.93 0.65
This work. LHash-96 256 96 16 16 18 110 234 67 142 414 88.09 61.84 0.92
* Using a frequency of 100KHz.
+ An optimal latency is considered since the data is not publicly available.

TABLE IV
POWER AND ENERGY CONSUMPTION FOR THE HASH FUNCTIONS UNDER EVALUATION. RESULTS OBTAINED FROM PLACE-AND-ROUTE.

Work Design Message
(bits)

Digest
(bits) r r’ Internal

rounds
LAT

(cycles)
POW* (mW) ENE*

(uJ)
ENE*/bit
(uJ/bit)Static Dynamic Total

xc3s50-5cp132
This work. SPONGENT-88 256 88 8 8 45 1980 27.25 0.81 28.06 555.59 2.17
This work. LHash-96 256 96 16 16 18 414 27.25 1.64 28.89 119.60 0.47

xc6slx16-3csg324
This work. SPONGENT-88 256 88 8 8 45 1980 19.91 1.28 21.19 419.56 1.64
This work. LHash-96 256 96 16 16 18 414 19.91 2.09 22.00 91.08 0.36
* Using a frequency of 100KHz.

mately 5 times. In the efficiency metric of Thr*/SLC for
the Spartan-3, LHash-96 almost doubled the efficiency of
SPONGENT. For the Thr*/SLC in the Spartan-6 FPGA, LHash-
96 obtained an advantage of 30% over SPONGENT-88.

However, for power estimation, SPONGENT-88 obtained
the smallest expenditures for both FPGAs utilized. When
the latency was factored for the energy consumption, the
advantage turned in favor of LHash-96. Since the message
size is constant, the efficiency in ENE*/bit also showed better
results for LHash-96.

D. Results comparison
In the literature we found two implementations of

SPONGENT-88 in FPGA [6], [11]. No implementations of this
type were found for LHash. These works provide brief results
in area and performance and are used as reference in this
section. Since we do not have access to the implementation
files of aforementioned works, we use here the published
information. The Xilinx toolchain version utilized in [6], [11]
is not reported in the sources.

Compared to [11] and [6], our SPONGENT-88 implemen-
tation achieved smaller resource usage in SLC and higher
efficiency in throughput-per-slice. The main difference in our
work compared to that reported in [11] is the architectural
design, which in our case has a control with reduced com-
plexity. Our proposal appears to be similar to the architecture
described in [6], following similar implementation processes
using the Xilinx tool chain and a Spartan-6 FPGA. However,
our design requires 23% less slices.

In the case of the Spartan-3 board, our implementation
improved the results in [11] by 42 SLC (36%) and requires 6
SLC (23%) less than [6] for the Spartan-6 FPGA.

V. CONCLUSION

In this paper we evaluated the hardware design of two
lightweight hash functions, well suited to be used as building

blocks of security schemes in the envisioned IoT applications.
The designs were crafted considering adequate trade-offs

between resource usage, latency, and energy consumption.
Both architectures were provided with data and control ports
which allows them to be used in larger systems as a hash core.

Less cycles per round and higher I/O rates were the key
aspects for obtaining the high performance and low energy
consumption of LHash-96. As a result, this hash function came
in top of the two efficiency metrics proposed. As far as we
know, our SPONGENT-88 design implemented in the Spartan-6
FPGA is the smallest ever reported for any hash function.

REFERENCES

[1] T. Eisenbarth, C. Paar, A. Poschmann, S. Kumar, and L. Uhsadel, “A
Survey of Lightweight Cryptography Implementations,” IEEE Des. Test,
vol. 24, no. 6, pp. 522–533, Nov. 2007.

[2] D. Maimut and K. Ouafi, “Lightweight Cryptography for RFID Tags,”
IEEE Security & Privacy, vol. 10, no. 2, pp. 76–79, Mar 2012.

[3] C. Alippi, A. Bogdanov, and F. Regazzoni, “Lightweight Cryptography
for Constrained Devices,” in ISIC 2014, 2014, pp. 144–147.

[4] D. B. Roy, P. Das, and D. Mukhopadhyay, “ECC on Your Fingertips:
A Single Instruction Approach for Lightweight ECC Design in GF(p),”
in SAC 2015, 2015, pp. 161–177.

[5] A. Bogdanov, L. Knudsen, G. Leander, C. Paar, A. Poschmann, M. Rob-
shaw, Y. Seurin, and C. Vikkelsoe, “PRESENT: An Ultra-Lightweight
Block Cipher,” in CHES 2007, 2007.

[6] B. Jungk, L. R. Lima, and M. Hiller, “A systematic study of lightweight
hash functions on FPGAs,” in ReConFig’14, Dec 2014, pp. 1–6.

[7] M. Bellare and P. Rogaway, Introduction to Modern Cryptography,
1st ed., 2005.

[8] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche, “Sponge Func-
tions,” Ecrypt Hash Workshop 2007, 2007.

[9] A. Bogdanov, M. Knežević, G. Leander, D. Toz, K. Varıcı, and I. Ver-
bauwhede, “SPONGENT: A Lightweight Hash Function,” in CHES 2011,
2011, pp. 312–325.

[10] W. Wu, S. Wu, L. Zhang, J. Zou, and L. Dong, “LHash: A Lightweight
Hash Function,” in Inscrypt 2013, 2014, pp. 291–308.

[11] M. Adas, “On the FPGA-Based Implementation of SPONGENT,”
[Online] http://ece.gmu.edu/coursewebpages/ECE/ECE646/F11/project/
F11 presentations/Marwan.pdf, 2011, [Last access] 06-26-2017.

