
A Machine Learning Approach for Area Prediction
of Hardware Designs from Abstract Specifications

Elena Zennaro1,3, Lorenzo Servadei1,4, Keerthikumara Devarajegowda1,2, Wolfgang Ecker1,3

Infineon Technologies AG1 - University of Kaiserslautern2 - Technical University of Munich3

Johannes Kepler University Linz4

Email:<Firstname.Lastname>@infineon.com

Abstract—Advancements of Machine Learning (ML) in the
field of computer vision have paved the way for its potential
application in many other fields. Researchers and hardware
domain experts are exploring possible applications of Machine
Learning in optimizing many aspects of hardware development
process.

In this paper, we propose a novel approach for predicting
the area of hardware components from specifications. The flow
uses an existing RTL generation framework, for generating valid
data samples that enable ML algorithms to train the learning
models. The approach has been successfully employed to predict
the area of real-life hardware components such as Control and
Status Register (CSR) interfaces that are ubiquitous in embedded
systems. With this approach we are able to predict the area
with more than 98% accuracy and 600x faster than the existing
methods. In addition, we are able to rank the features according
to their importance in final area estimations.

Index Terms—Machine Learning, Design Productivity, Area
Estimation, Meta-Modeling, Register Interface, Code Generation,
Model-Driven-Architecture

I. INTRODUCTION

The design gap in hardware industry is a well-known issue

and is the result of continuous scaling in the technology

domain. Product design can be largely improved using modern

modeling and optimization techniques. The key question to

ensure an optimal design is what is desirable about the

design. When dealing with SoC design several aspects can be

considered as optimization targets, e.g. dimension, speed, cost,

power consumption, etc. Ideally, a multi-objective optimiza-

tion [14] of these features is necessary to ensure a fabrication

that is constantly at the forefront and aligned with market

requirements.

To fill the productivity gap, advanced computational sci-

ences can be the cutting-edge choice. Machine Learning,

which is a branch of Artificial Intelligence (AI), is an impor-

tant area of research with several promising opportunities for

innovation at various level of hardware design. ML algorithms

learn from examples and try to identify the structure of a

system. In this sense, ML methods play a crucial role in

extracting meaningful information from complex structured

data and are able to ensure fast and accurate performances.

In order to cope with the complexity of hardware design

optimization, we address the problem by starting from the

estimation of one of the target features, that is the area of an

hardware component. To achieve this goal, we resort to dif-

ferent Machine Learning algorithms to perform the prediction.

The novelty here illustrated relies upon an RTL generation

framework to collect data samples from abstract specifications,

combined with the use of ML algorithms, trained on the

collected data, to estimate the area.

The rest of this paper is structured as follows. Section II

presents an overview of the state of the art as regards hardware

design optimization and Machine Learning approaches in

semiconductor design and manufacturing. Section III describes

the approach adopted to create data collection of hardware

components and the Machine Learning algorithms used to

provide an estimation of the area starting from abstract

specifications. Section IV delves into a real-life application

of the proposed approach. A discussion on the results of

our proposed approach on estimating the area for register

interfaces and a brief summary concludes the paper.

II. RELATED WORK

SoC design has been widely explored in the last decades.

Several approaches can be considered in order to optimize SoC

features. In [24], a convex optimization approach is used to

optimize the performance of Real Time Chip Multiprocessors

(CMPs). Convex optimization is shown to be very efficient in

an early stage design exploration, in order to deal with the

choice of the area of the individual components of the chip.

Machine Learning algorithms are adopted in several sce-

narios in the semiconductor manufacturing field. For instance,

ML and power estimation is the main focus of paper [17].

Through regression trees, a powerful and straight-forward ML

algorithm, the research group is able to combine high-level

design features and low-level soft-processor parameters, for

an accurate prediction over power and performance at the

same time. In [23], Singular Value Decomposition (SVD), a

matrix factorization algorithm for feature reduction, is used

to retrieve principal components, a lower number of feature

combination which are more meaningful to predict the power

usage. Principal Components Analysis (PCA), a linear feature

reduction method, is exploited also in [16]. The authors use a

combined approach of PCA and evolutionary algorithms for a

size optimization problem. PCA accelerates the search of an

413

2018 21st Euromicro Conference on Digital System Design

978-1-5386-7377-5/18/$31.00 ©2018 IEEE
DOI 10.1109/DSD.2018.00076

optimized design of analog and radio-frequency circuits. By

means of PCA, the authors propose a feature selection which

provides the necessary and relevant information for a robust

design size reduction. The results show that they are able to

find a set of parameters leading to an almost 3x reduction of

the circuit hypervolume.

ML techniques are often employed to detect faults and

anomalies. In [12], several ML methods are exploited to

detect faulty wafers in semiconductor manufacturing. To detect

hotspot regions in a system, i.e., regions where circuit failures

are more likely to happen, in [22] a deep learning approach

is addressed. Particular attention is given to the tuning of the

hyperparameters of the CNN architecture, in order to establish

an efficient hotspot detection. The use of ML techniques

to identify intermittent failures in post-silicon validation is

proposed in [4]. The authors explore both supervised and unsu-
pervised ML algorithms and show how a clustering approach

can be more efficient to solve the problem of post-silicon bug

diagnosis.

With recent advances in ML and its power to extract

meaningful information from complex structure, many re-

search works address the use of ML approaches to handle

the complexity of semiconductor manufacturing framework.

However, the application of ML techniques for hardware

design components optimization is still in its early stages.

III. APPROACH

Our approach for area estimation of hardware designs using

Machine Learning algorithms is divided into two phases: data
collection and, training and testing.

• Data collection: This phase involves collecting data sam-

ples from abstract specifications and synthesis reports,

required for training the Machine Learning models. In

other words, we first generate the RTL code for a

given specification through an automation framework;

synthesize the RTL design for a given FPGA board and

extract the number of configurable logic blocks1 (CLBs)

information from the synthesis report.

• Training and testing: In this phase, appropriate parame-

ters from synthesis reports and abstract specifications for

training the Machine Learning models are selected. After

collecting a reasonable number of data samples, appro-

priate ML algorithms are applied for area estimation. The

training (model learning) and testing (model evaluation)

are carried out simultaneously until learning curve flattens

out. Finally, we use ML models to estimate the area for

new abstract specifications without the need to generate

and synthesize RTL code.

1Configurable logic blocks are fundamental building blocks of pro-
grammable arrays consisting of multiple logic cells. The number of CLBs
required to realize the given design function directly represent the area
requirements of that design function.

The RTL generation framework is a pre-requisite in order to

generate multiple data samples needed for ML. The underlying

generation framework allows to generate anomalies, corner

cases and hence ensures robustness of the learning models.

In III-A, we describe the RTL generation framework used to

collect data samples to train ML models. The rationale behind

selecting different ML algorithms for area estimation and a

brief description of individual approach is outlined in III-B.

A. RTL generation framework for collecting data samples

Specification�

Logic�Synthesizer�

MoT�
layer�

MoV�
layer�

Transformation�

H/W�Generation�Language�

MoD�
layer�

#Conf.�Logic�Blocks�

RTL�code�

Fig. 1: RTL generation flow for collecting data samples.

At Infineon, we use a well established automation frame-

work based on meta-modeling for code generation [9], [10].

Object Management Group (OMG), a non-profit organization

for standard software flows, recently updated a code gen-

eration flow called Model-Driven-Architecture (MDA) [20].

The existing meta-modeling framework is being enhanced to

adapt OMG’s MDA principle for code generation. Although

the adapted approach for RTL generation is already published

in [18], [19], we provide a brief summary of the same for

explaining the need for RTL generation framework.

Our approach for RTL generation relies on series of model-

to-model transformations before generating the view files in

a specific target language. The approach followed is drawn

in Figure 1. The different layers of the flow are described as

follows:

• MoT Layer: The first layer of our approach is MoT

layer and involves capturing the informal specification ac-

cording to formalized, abstract meta-models called Meta-

Model-of-Things (MMoT). The meta-model defines the

high level elements, their relations, their properties and

in addition, the constraints and semantics for the models.

414

An instance of the MMoT is Model-of-Things (MoT),

which represents the valid abstraction of the hardware

object/structure. Valid instances of the MMoT enable

architectural exploration of a given hardware function.

An example of a MMoT is shown in Figure 3, which

represents the meta-model of a register interface. MoTs

provide an outside view of the requirements and abstract

away the implementation details (micro-architecture).

• MoD Layer: The intermediate layer includes transforming

MoT into a more concrete model called Model-of-Design

(MoD). The transformation is realized through a hardware

generation language also referred to as Hardware Domain

Specific Language (HDSL), which is coded in Python.

We refer to these transformations as Templates-of-Design

(ToD). This Python based HDSL extracts the abstract

specification from MoT and defines a more concrete

model that holds the micro-architecture of the intended

hardware function. The MoD in turn is an instance of its

meta-model that holds all available components and also

outlines the semantics of the MoD. ToD are programmed

to MMoT and hence, it is possible to realize MoD for

any valid instance of the MMoT.

• MoV Layer: A final model-to-model transformation of

MoD into Model-of-View (MoV) is realized through

another transformation layer. MoVs are platform specific

and can be viewed as abstract syntax tree of the specific

target language from which the view files (ex: RTL code

in VHDL or SV) are generated.

After generating RTL code, logic synthesis tool is used to

synthesize RTL code to a FPGA based board. From the syn-

thesis report, we extract number of configurable logic blocks

that directly depict the area requirements of the implemented

hardware function. In addition, the generated RTL code is

functionally verified by following an approach described in

[5], [6]. The underlying automation framework allows gen-

eration of valid instances of a MMoT with minimal manual

efforts. In addition, the framework enables random generation

of valid instances of a meta-model. As already mentioned,

ToDs are programmed to consider all valid instances of the

MMoT and hence, RTL code is generated for any randomly

generated MoT. In this fashion, for a given specification of a

hardware function, multiple data samples are generated with

the help of RTL generation framework. A specific example for

collecting data samples, employing the described approach is

outlined in IV.

B. Machine Learning Algorithms for Area Estimation

Machine Learning is a form of Artificial Intelligence (AI)

that is able to perform a certain task without being specifically

programmed for it. To achieve this, a ML model learns
from previous examples related to the specific task during

a process called training. In this subsection, we provide a

general overview of the ML algorithms that are employed for

area estimation. In order to provide an estimation of the area

of a hardware component, a regression problem2 has to be

considered. The goal of regression is to predict the value of

one or more continuous target variables given the value of a

multi-dimensional vector of input variables [13].

To obtain robust and accurate results, we implement and

compare two ensemble methods: Random Forest and Gradient
Boosting. Ensemble methods are meta-algorithms that com-

bine several ML techniques into one predictive model [7].

Random Forest (RF) algorithms became of popular interest

because of their abilities to capture complex interaction struc-

tures in the data. The driving principle of a random forest

is to build several estimators independently and then average

their predictions [2]. In detail, it builds a large collection of de-

correlated trees and then averages them. Finally, the prediction

is performed by a voting decision among the ensemble of trees.

On the other hand, with Gradient Boosting (GB) algorithms,

base estimators are built sequentially in order to combine

several weak models to produce a powerful ensemble [11].

We adopt a GB approach, named Gradient Boosting Tree
(GBT), in which decision trees are used as weak-learners.

In this way, we are able to actively generate complementary

base-learners by training the next learner boosting on the

mistakes of the previous learners. The choice of RF and GB is

related to the internal structure of ensemble methods. Indeed,

algorithms which average out multiple regressors are prone to

achieve better generalization performances. Furthermore, the

possibility to use decision trees as a feature selector method

provides meaningful insights on the importance of features for

the prediction.

As an alternative, we consider Multilayer Perceptron (MLP),

which corresponds to the simplest case of Feedforward Artifi-
cial Neural Network (FFNN) in which, each node is a neuron

that uses a nonlinear activation function [15]. Feedforward

neural networks provide a general framework for representing

nonlinear functional mappings between a set of input variables

and a set of output ones. Indeed, from a theoretical point of

view, as demonstrated in the universal approximation theorem
[21], an FFNN with a single hidden layer is able to approx-

imate continuous functions on compact subsets of R
m. As

shown in equations (1) and (2), for any continuous function f
and ε > 0, there exist a monotonically increasing and bounded

continuous function ϕ, n ∈ N, number of neurons in the

hidden layer, constants vi, bi ∈ R, and parameters βi ∈ R
m,

for i = 1, . . . , n, such that

F (x) =

n∑

i=1

viϕ(β
T
i x+ bi) (1)

has the property

|F (x)− f(x)| < ε, ∀x ∈ Im, (2)

2In Machine Learning, a regression problem is defined as a task in which
quantitative outputs are predicted, i.e., outputs are real values/continuous
variables. Differently, in a classification problem, qualitative outputs are
predicted, i.e., outputs are discrete values/categorical variables.

415

where Im is an m-dimensional unit hypercube. This theorem

highlights the power of a simple MLP: it is able to represent a

wide variety of functions, when using appropriate parameters.

Visually, an MLP can be represented by a graph in which

the input layer is made of a number of perceptrons equal

to the number of input variables, while the output layer has

as many neurons as the number of output variables. The

learning rule, such as Stochastic Gradient Descent, Nesterov
Momentum, etc., method that improves the neural network’s

performance, is a quasi-Newton algorithm. This algorithm

updates the weight parameters of the network. In this paper, as

learning rule we consider the Limited-memory BFGS method,

a second-order algorithm that does not require the exact com-

putation of the Hessian matrix, but directly considers a sparse

approximation of its inverse [25]. Thanks to this procedure,

the L-BFGS algorithm allows to obtain a fast convergence.

This method guarantees fewer learning epochs w.r.t. first order

methods (e.g. Stochastic Gradient Descent). However, due to

computational constraints, it is usually feasible only to small

datasets. The selection of MLP as a forecasting algorithm is

related to the final purpose of the area prediction, which is a

general design optimization. Neural Networks are prone to be

used in multi-objectives optimization, since they are provided

with a differentiable loss function and offer the possibility to

be implemented in a composite fashion, with other Neural

Networks models.

In order to ensure a robust and statistically relevant evalua-

tion of the models, we split the model selection step from the

model evaluation. The two different processes are performed

through a nested cross-validation [3]. The cross-validation is

performed by splitting the dataset into different folders (k-
folds cross-validation). After that, one folder is used for the

testing phase, while the remaining are involved for the training

process. These steps are repeated until each folder, one after

the other, has been used as a test set. Results of training

and testing validations are then averaged out among all the

repetitions done. Additionally, in nested cross-validation, a

first outer k-fold cross-validation loop is used to split the data

into training and test folds, and an inner loop is considered to

select the model via k-fold cross-validation on the training

fold. After model selection, the test fold is then used to

evaluate the model performance. This approach allows to

select the proper hyperparameters during the inner loop phase,

as well as the possibility to evaluate the performance for each

model in the outer loop phase, keeping the two operations

separated.

To ensure a fine tuning of the hyperparameters of a model,

two optimization techniques can be considered: the random
search and the grid search [1]. Both approaches explore the

same space of parameters. Even if the run time for random

search is drastically lower, its performances are slightly worse.

On the other side, it would be too computationally expensive

to search over the many different parameters simultaneously

using grid search. For this reason, we resort to a combination

of the two: first a random search to narrow the range of the

values for each parameter, afterwards a grid search based

on the values provided by the previous phase. We apply

this procedure to tune the hyperparameters only for the RF

model. Since this algorithm is usually subjected to a consistent

number of hyperparameters, a simple grid search would be too

computationally expensive by itself. As we show in Section V,

this approach allows to obtain the necessary trade-off between

the feasibility of the hyperparameters and the accuracy of the

model.

IV. APPLICATION

The approach described and proposed in Section III is

employed for the area estimation of real application hardware

components. For the same, we consider a regular component

in an embedded system. Embedded systems in general consti-

tute an embedded processor, memory element and a handful

of peripheral devices. Timers/counters, interrupt controllers,

serial ports to name a few, are regular components in any

embedded system. Each of these components interacts with

the software/program through Control and Status Registers3.

Address, size and function/purpose of these CSRs are features

of the peripherals that hold them [8].

Timer Per ipheral
�
�
�
�
�
�
�
�
�
�

wr-en
rd-en

addr_in

data_in

data_out
MAXVAL

ACTVAL

CTRLSTAT

…

logic

Timer
 logic

ovf_int

CSC

0x00

0x01
�
�
�
�
�
�
�

0x07

Fig. 2: Timer peripheral with CSR interface.

We implemented a timer component as per the approach de-

scribed in III. A simplified timer peripheral device is as shown

in Figure 2. A timer can be used for diverse applications:

as a watchdog timer for resetting CPU; for counting external

events; to provide time-base for asynchronous communication

devices; for raising interrupts at specific time interval and

many more. The state of the timer is represented by the

state of its registers such as MAXVAL, ACTVAL, CTRLSTAT
and CCUVAL. Each register is readable and writable by the

program. As the registers are common in all peripheral devices

and there needs be a standard mechanism for accessing them,

we built a Control Status Configuration (CSC) that can be

integrated as sub-component into any peripheral device. As

shown in Figure 2, CSC sub-component represents the register

interface of the timer device. As described in section III, the

first task of the RTL generation framework is to create a

MMoT that represents the abstract components of a register

3CSRs are also referred to as Special Function Registers (SFRs)

416

interface. The meta-model of the register interface (simplified)

is as shown in Figure 3.

Bitfield

Name : string [1]

Size : int [1]

DefaultValue : int [1]

HwRd : bool [1]

HwWr : bool [1]

SwRd : bool [1]

SwWr : bool [1]

Virtual : bool [1]

DC : bool [1]

Contained

Position : int [1]

Unit

Name : string [1]

Size : int [1]

Address : int [1]

Interface
Name : string [1]

AddressWidth : int [1] = 32

BfAccess : bool [1] = False

UnitAddressWidth : int [0..1]

Encoding : string [*]

DataWidth : int [1] = 32

Metacsc
Name : string [1]

rootNode

*

*

*

*

*

Fig. 3: Meta-model of a register interface (simplified).

Metacsc represents the root node of the meta-model and is

composed of a list of bitfields and interface features. Bitfield
class represents the properties of each bitfield contained in

the register interface. Each bitfield has a default value, size

and access rules (HwWr, HwRd, SwWr, SwRd). In addition,

a bitfield can be virtual to the interface and DC represents

if the bitfield is protected against un-authorized/unnecessary

modifications. The Interface class in turn defines the properties

of the interface such as data-width, address-width and whether

each bitfield is addressable individually (BfAccess). Interface
class is composed of Unit class that acts as a wrapper for

bitfields in which the position of the bitfields is represented

by Contained class. As all valid instances of this meta-model

are valid MoTs, we setup a random MoT generator script4

that creates valid MMoT instances by considering necessary

semantics of the hardware component. RTL code is generated

for each MoT, following the 3-layer approach depicted in

Figure 1, after which logic synthesis reports are generated.

Data samples are collected from MoT (abstract specification)

and corresponding synthesis reports for training ML learning

models.

Selecting input features and output parameters: We con-

sider a multiple output regression problem where we wish

to predict the Y1, . . . , YK outputs (also called responses)

from the inputs (usually named as features) X1, . . . , Xp.

To build the dataset we start from the parameters of the

MoT. Accordingly, LUTs and Slice Registers of the CSC

are the outputs to be predicted, while the set of features

is related to bitfield aspects and is reported in Table I. We

4Random generator is a Python script that makes heavy use of underly-
ing automation framework for generating valid meta-model instances with
minimum manual efforts

consider N = 319 samples which means that the set of

training data is given by {(x1, y1), . . . , (xN , yN)}, where each

xi = (xi1, xi2, . . . , xip)
T is a vector of feature measurements

for the i-th case. Therefore, we use a dataset which has p = 10
features and N = 319 samples. The amount of the generated

samples is chosen according to the flattening of the learning

curve of the selected algorithms (i.e. adding other samples

would not improve the algorithm accuracy with the chosen

hyperparameters).

TABLE I: Features from MoT and output parameters.

Dataset

Features Total Contained Size
Total Bitfields Size
No. of Bitfields
No. of Units
No. of HwRd
No. of HwWr
No. of SwRd
No. of SwWr
No. of Virtual
No. of DC

Outputs No. of LUTs
No. of Slice Registers

The features for the regression task are extrapolated from

the MoT. The MoT is structured so that it contains relevant

information for the CSC component, which can be used for

the LUTs and Slice Registers forecast. Two different groups

of features can be identified in the CSC MoT: register specific
features and bitfield specific features. The former considers

the CSC structure from a macro-level perspective: the Total
Contained Size describes the amount of bits as a sum of all

bitfield references inside each unit, the Total Bitfields Size
aggregates the size of all generated bitfields, and finally the

No. of Units provides the number of units inside the CSC.

The latter instead is specific to the single bitfield structure: the

No. of HwRd captures how many bitfields can be read from

peripheral devices, the No. of HwWr indentifies how many

bitfields can be written from peripheral devices, the No. of
SwRd describes how many bitfields can be read from CPU

instructions and the No. of SwWr tells how many bitfields can

be written from CPU instructions. Furthermore, the No. of
Virtual aggregates how many bitfields can be virtual the CSC,

whereas the No. of DC describes the number of bitfields which

have a protection mechanism bit.

V. RESULTS AND DISCUSSION

In this section we present results obtained by applying the

three ML algorithms described in Section III-B to estimate

the area of the CSC in terms of number of LUTs and Slice

Registers. The ML algorithms are implemented by means of

Scikit-learn and Scipy Python 3.x libraries. In the first part, we

analyze the search of the optimal parameters for each model,

while in the second part, we evaluate the performance of each

model by means of the accuracy score.

417

Hyperparameters: The tuning of the hyperparameters is

performed in the inner loop of the nested cross-validation and

by means of a grid search the best model is selected. For the

inner loop a 4-fold cross-validation is used for all the three

algorithms.

As regards the RF algorithm, the tuning of the following

hyperparameters is considered:

• number of trees in the forest;

• maximum depth of the tree;

• maximum number of features to be considered when

looking for the best split;

• minimum number of samples required to be at a leaf node;

• minimum number of samples required to split an internal

node.

As previously mentioned in Section III-B, as a first step, a

random search is carried out to narrow the range of the values

for each hyperparameter. Afterwards, the inner loop 4-fold

cross-validation provides the optimal hyperparameter values

(see Table II) by means of a grid search. This combined

optimization procedure allows to obtain the proper trade-off

between the number of trees of the forest and the maximum

depth of each tree. A fine tuning of these two parameters

is necessary to deal with bias-variance trade-off [2]: deeper

trees reduce the bias, while more trees reduce the variance.

As we show in the next subsection, we are able to avoid huge

overfitting of the RF model in this way.

TABLE II: Random Forest hyperparameters.

Parameters Values

No. of Trees 400

Max. Depth 120

No. of Features 3

Min. Samples split 2

Min. Samples leaf 1

To select the proper GBT model, a multi-output regressor
(MOR) is considered with different GBT as estimators. In

order to build the parameter grid for the multi-output regressor

we consider the following GBT regressors as estimators:

• GBT regressor with number of trees = 1000 and learning
rate = 0.01;

• GBT regressor with number of trees = 1000 and learning
rate = 0.04;

• GBT regressor with number of trees = 2000 and learning
rate = 0.01;

• GBT regressor with number of trees = 10000 and learn-
ing rate = 0.04.

The learning rate parameter represents a weighting factor that

shrinks the contribution of each trees that is added sequentially

in the series. Since new trees are created to correct the residual

errors in the predictions from the existing sequence of trees,

the GBT can lead to a quickly overfitting of the training

dataset. For this reason, a proper trade-off between number

of trees and learning rate is necessary in order to avoid huge

overfitting of the model. In the inner loop 4-folds cross-

validation, the grid search provides the best GBT estimator

(among the 4 proposed) in terms of numbers of tress and

learning rate (see Table III).

TABLE III: Gradient Boosting hyperparameters.

Parameters Values

No. of Trees 1000

Learning Rate 0.04

Since the restrained dimension of the dataset, a simple

MLP with one hidden layer is sufficient to achieve satisfac-

tory results. The tuning of parameters is performed only on

the hidden layer size hyperparameter and the grid search is

restricted to hidden layer of dimension that ranges from 1 to

12 neurons. In order to ensure robustness of the algorithm, a

niter-loop is instantiated: at each iteration, the nested 4-folds

cross-validation with grid search is performed and the best

model, in terms of optimal value of the hidden layer size, is

computed. We run the algorithm with niter = 30 and at the

end, we average the obtained values for the hidden layer size.

With this procedure we obtain an optimal value of 10 neurons

in the hidden layer. The MLP model we consider is depicted

in Figure 4.

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

Y1

Y2

Hidden
layer

Input
layer

Output
layer

Fig. 4: Multilayer Perceptron.

Models Performance: As previously explained in Section

III-B, after the inner cross-validation, an outer k-folds cross-

validation is necessary to evaluate the performance of the mod-

els obtained from the parameter optimization in the previous

phase. Also for the outer cross-validation the number of folds

is set to 4 for all the three algorithms. In this second phase,

the performance of each model is evaluated by means of the

coefficient of determination R2 which is defined as

R2 = 1− SSres

SStot
(3)

418

where SStot represents the total sum of square, which is pro-

portional to the variance of the data, while SSres corresponds

to the residual sum of squares. For each algorithm the nested

cross-validation R2 score is computed and obtained results are

shown in Table IV. As we can notice, all the three algorithms

are able to reach a coefficient of determination of at least 0.95.

TABLE IV: Model accuracy.

Models R2 scores

Random Forest 0.979

Gradient Boosting 0.951

Multilayer Perceptron 0.983

However, by comparing train and test scores on each split of

the cross-validation, substantial differences on the behaviors

of the three algorithms can be observed. These results are

reported in Figure 5, 6 and 7. From these plots, it is clear

that the RF and the GBT algorithms still overfit slightly the

dataset, even after several regularization steps. A possible

reason to explain these behaviors is related to the tuning of

the hyperparameters. For the RF and GBT the search space of

the parameters results to be larger and more complex and this

leads to a more challenging fitting of the learning function.

In addition, more common regularization methods (e.g. depth

trees reduction, decrease in the number of features) [2] have

failed in decreasing the overfit. On the other side, a simple

neural network, characterized by a relatively confined hyperpa-

rameter space, is sufficient to ensure accurate prediction with

limited computational effort.

Fig. 5: RF training vs testing scores.

To conclude the result section we provide an analysis of

the importance of the features and relate it to hardware design

aspects. RF algorithms provide a straightforward method for

feature selection, which is named mean decrease impurity [2].

Every node in the decision tree represents a condition on a

single feature. Thus, when training a tree, it can be computed

how much each feature decreases the weighted impurity in a

tree. For a forest, the impurity decrease from each feature

can be averaged and the features are ranked according to

this measure. Figure 8 shows the use of the RF algorithm

to evaluate the importance of features on the regression task.

It is noticeable how the No. of Units, the Total Contained

Fig. 6: GBT training vs testing scores.

Fig. 7: MLP training vs testing scores.

Size and the Total Bitfields Size are the most important factors

which affect the area prediction. These results are reasonable

since the number of units together with the total dimension

of the bitfields are what influence more the final dimension of

the register interface. Indeed, if we consider different mapping

algorithms to link bitfield to units, a higher number of units

is correlated with a larger dimension of the register interface,

and this can give a reasonable explanation for the register

interface dimension. A similar explanation can be given for

the Contained Size and the Total Bitfields Size: larger CSCs

contain a larger contained size, which depends also on the

total size of the bitfields. The aggregate size of the bitfields is

indeed predominant w.r.t their number. The rest of the features

occupies at most one bit per bitfield, for this reason, it does

not appear to be too relevant for area estimation purposes (as

this is irrelevant to the dimensions of containeds and bitfields).

VI. CONCLUSION AND FUTURE WORK

In this paper we introduced a novel approach to estimate

the area of hardware components from specifications. In this

paper we have proved that Machine Learning techniques and

statistically generalizable model evaluations are a promising

approach to ensure fast and reliable performances and can help

for a better understanding of hardware design features.The

novelties of our approach rely upon the combination of an

a RTL automation framework to create a data collection

from abstract specifications and ML algorithms to perform

the prediction. Precisely, we generate the RTL code for a

given specification for several alternatives and then synthesize

419

Fig. 8: Features Importance.

the RTL design in order to extract the number of CLBs.

Afterwards, an estimation of the area in terms of CLBs is

performed by means of ML algorithms. In this way, trade-

off analysis of implementation alternatives can be done much

faster than doing repeatedly synthesis runs and at a very high

level of precision (approx. 99%).

Three ML algorithms have been considered to predict the

area of a RI component. In order to ensure robustness of the

results for a real and concrete task, particular attention has

been given to the model performances. Moreover, we studied

the effectiveness of the hyperparameters tuning to make the

architecture more feasible for the specific task. From the

results obtained, it is noticeable how the MLP model is able

to outperform RF and GBT.

As next step, we are undertaking area estimation of several

sub-components of a SoC, together with trade-off analysis

between different objectives such as area, performance, and

power consumption. The increase in complexity requires

robust and accurate models able to cope with non-trivial

hardware design aspects. In particular, when dealing with a

larger parameter space, more complex ML algorithms and

optimizers are necessary for further forecasting problems.

VII. ACKNOWLEDGES

This work has been partially funded by the German ”Bun-

desministerium für Bildung und Forschung (BMBF)” projects:

COMPACT grant BMBF FE 01IS17028 and SAVE4I grant

BMBF 01IS17032.

REFERENCES

[1] James Bergstra and Yoshua Bengio. Random search for hyper-parameter
optimization. Journal of Machine Learning Research, 13(Feb):281–305,
2012.

[2] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.
[3] Michael W Browne. Cross-validation methods. Journal of mathematical

psychology, 44(1):108–132, 2000.

[4] Andrew DeOrio, Qingkun Li, Matthew Burgess, and Valeria Bertacco.
Machine learning-based anomaly detection for post-silicon bug diagno-
sis. In Proceedings of the Conference on Design, Automation and Test
in Europe, pages 491–496. EDA Consortium, 2013.

[5] K. Devarajegowda and W. Ecker. On generation of properties from
specification. In 2017 IEEE International High Level Design Validation
and Test Workshop (HLDVT), pages 95–98, Oct 2017.

[6] K. Devarajegowda, J. Schreiner, R. Findenig, and W. Ecker. Python
based Framework for HDSLs with an underlying Formal Semantics. In
Proceedings of the 36th International Conference on Computer-Aided
Design, ICCAD ’17, New York, NY, USA, 2017. ACM.

[7] Thomas G Dietterich. Ensemble methods in machine learning. In
International workshop on multiple classifier systems, pages 1–15.
Springer, 2000.

[8] Wolfgang Ecker, Volkan Esen, Thomas Steininger, and Michael Velten.
HW/SW Interface, pages 95–149. Springer Netherlands, Dordrecht,
2009.

[9] Wolfgang Ecker, Michael Velten, Leily Zafari, and Ajay Goyal. Meta-
modeling and code generation - the infineon approach. In Wolfgang
Mueller and Wolfgang Ecker, editors, MeCoES - Metamodelling and
Code Generation for Embedded Systems: Workshop with ESWEEK,
pages 1–4. http://adt.cs.upb.de/mecoes/MeCoES2012-Proceedings.pdf,
2012.

[10] Wolfgang Ecker, Michael Velten, Leily Zafari, and Ajay Goyal. The
metamodeling approach to system level synthesis. In Gerhard Fettweis
and Wolfgang Nebel, editors, DATE, pages 1–2. European Design and
Automation Association, 2014.

[11] Jerome H Friedman. Greedy function approximation: a gradient boosting
machine. Annals of statistics, pages 1189–1232, 2001.

[12] Dongil Kim, Pilsung Kang, Sungzoon Cho, Hyoung-joo Lee, and
Seungyong Doh. Machine learning-based novelty detection for faulty
wafer detection in semiconductor manufacturing. Expert Systems with
Applications, 39(4):4075–4083, 2012.

[13] Nasser M Nasrabadi. Pattern recognition and machine learning. Journal
of electronic imaging, 16(4):049901, 2007.

[14] Patrick Ngatchou, Anahita Zarei, and A El-Sharkawi. Pareto multi
objective optimization. In Intelligent Systems Application to Power
Systems, 2005. Proceedings of the 13th International Conference on,
pages 84–91. IEEE, 2005.

[15] Sankar K Pal and Sushmita Mitra. Multilayer perceptron, fuzzy sets,
and classification. IEEE Transactions on neural networks, 3(5):683–697,
1992.

[16] T. Pessoa, N. Lourenço, R. M. Martins, R. Póvoa, and N. Horta.
Enhanced analog and rf ic sizing methodology using pca and nsga-ii
optimization kernel. pages 1–4, March 2018.

[17] Adam Powell, Christos Savvas-Bouganis, and Peter Y. K. Cheung. High-
level power and performance estimation of fpga-based soft processors
and its application to design space exploration. J. Syst. Archit.,
59(10):1144–1156, November 2013.

[18] Johannes Schreiner and Wolfgang Ecker. Digital hardware design based
on metamodels and model transformations. In IFIP/IEEE International
Conference on Very Large Scale Integration-System on a Chip, pages
83–107. Springer, 2016.

[19] Johannes Schreiner, Rainer Findenig, and Wolfgang Ecker. Design
Centric Modeling of Digital Hardware. In IEEE International High
Level Design Validation and Test Workshop, HLDVT 2016, Santa Cruz,
CA, USA, October 7-8, 2016, pages 46–52, 2016.

[20] F. Truyen. The fast Guide to Model Driven Architecture.
[21] Halbert White. Artificial Neural Networks: Approximation and Learning

Theory. Blackwell Publishers, Inc., Cambridge, MA, USA, 1992.
[22] Haoyu Yang, Luyang Luo, Jing Su, Chenxi Lin, and Bei Yu. Imbalance

aware lithography hotspot detection: a deep learning approach. Journal
of Micro/Nanolithography, MEMS, and MOEMS, 16(3):033504, 2017.

[23] Jianlei Yang, Liwei Ma, Kang Zhao, Yici Cai, and Tin-Fook Ngai. Early
stage real-time SoC power estimation using RTL instrumentation. pages
779–784, Jan 2015.

[24] Leonid Yavits, Amir Morad, Ran Ginosar, and U Weiser. Convex
optimization of real time soc. arXiv preprint arXiv:1601.07815, 2016.

[25] Ciyou Zhu, Richard H Byrd, Peihuang Lu, and Jorge Nocedal. Algorithm
778: L-bfgs-b: Fortran subroutines for large-scale bound-constrained
optimization. ACM Transactions on Mathematical Software (TOMS),
23(4):550–560, 1997.

420

