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Abstract—The exponential growth of complex, heterogeneous, 
dynamic, and unbounded data, generated by a variety of fields 
including health, genomics, physics, climatology, and social 
networks pose significant challenges in data processing and 
desired speed-performance. Existing processor-based software-
only algorithms are incapable of analyzing and processing this 
enormous amount of data, efficiently and effectively. 
Consequently, some kind of hardware support is desirable to 
overcome the challenges in analyzing big data. Big data 
analytics involves many important data mining tasks including 
clustering, which categorizes the data into meaningful groups 
based on the similarity or dissimilarity among objects. In this 
research work, we introduce an efficient FPGA-based parallel 
processing architecture for K-means Clustering, one of the 
most popular clustering algorithms. Experiments are 
performed on a benchmark dataset to evaluate the feasibility 
and efficiency of our hardware design. Our hardware 
architecture is generic, parameterized, and scalable to support 
larger and varying datasets as well as a varying number of 
clusters. Our hardware configuration with 32 processing 
elements (PEs) achieved 368 times speedup compared to its 
software counterpart.  

Keywords-Big data analysis; parallel processing architecture; 
FPGAs; K-Means clustering; embedded hardware; hardware 
algorithms; data mining 

I.  INTRODUCTION 
Since the late-2000s, data acquisition techniques and data 

storage media have evolved rapidly. This has resulted in an 
exponential growth of complex, heterogeneous, dynamic, 
and unbounded data being generated by a variety of fields 
including health, genomics, physics, climatology, and social 
networks. For instance, in genomics, the amount of sequence 
data generated doubled every seven months within the last 
decade, now producing several peta-bytes of data every year 
[20]. Also, the volume of data currently produced by NASA 
Earth science mission is about 12 peta-bytes, and is expected 
to grow by an order of magnitude within the next five years 
[4]. Analyzing and processing such an enormous amount of 
data pose serious challenges to the data mining community.  

Big data analytics often involves many important data 
mining tasks such as [15]: classification, clustering, 
regression, and association rule mining. From these, we are 
focusing on the most widely used clustering and 
classification. Most of today’s data mining tasks, including 
clustering and classification, for big data analysis are 

becoming more complex (compute/data intensive), requiring 
more processing power than ever before. Also, in many 
cases, the data needs to be processed in real-time to yield the 
actual benefit. These constraints have a significant impact on 
the speed-performance of the data mining applications.  

Existing algorithms for big data analytics are typically 
processor-based (software-only) designs. These processor-
based algorithms are incapable of analyzing and processing 
enormous amounts of data, efficiently and effectively. A 
survey done in [19] demonstrated that processor-based 
computing platforms, including multi-processor, multi-core, 
GPGPU (General Purpose Graphics Processing Unit) are 
simply not sufficient to handle this enormous amount of 
data. Consequently, new design techniques, architectures, 
and computing platforms are needed to overcome the 
challenges in analyzing big data.  

In order to satisfy the constraints and requirements 
associated with big data analytics, it is imperative to provide 
some kind of hardware support. In this research work, we 
investigate special-purpose hardware for big data analysis. 
Special-purpose or customized hardware is optimized for a 
specific application and avoids the high execution overhead 
of fetch/decode/execute instructions as in processor-based 
software-only designs [3].  As a result, customized hardware 
provides higher speed-performance, lower power 
consumption [6],[9] and area-efficiency compared to the 
equivalent software running on a general-purpose processor.  

Our main objective is to provide efficient hardware 
architectures for big data analysis to satisfy the associated 
constraints and requirements. In this work, we focus on 
hardware support for clustering techniques in data mining, 
specifically K-Means Clustering, one of the most popular 
clustering algorithms.  

We make the following contributions in this paper.  
• We introduce a novel and efficient embedded 

architecture for K-Means Clustering for data mining. 
Our proposed architecture is generic, parameterized and 
scalable. Our design can process varying data sizes (i.e., 
any number of vectors (D) and any number of attributes 
(N)) and varying number of clusters (K). Our design can 
be configured to have varying number of parallel PEs 
(P) to further enhance the speed-performance.  

• We introduce an efficient “Data Engine” to pre-fetch the 
essential data (for processing) from the off-chip external 
memory to the on-chip memory, thus significantly 
reducing the memory access latency.  



• We use a register-based interface and industry standard 
AXI-bus, which would enable seamless integration of 
our design to other computing platforms and systems.  

• We design embedded software for K-Means Clustering 
to evaluate our embedded hardware design.  

• We implement different hardware configurations with 
varying number of parallel PEs. We perform 
experiments on these configurations with varying data 
sizes and with varying number of clusters. We analyze 
the timing, speed-performance, and resource utilization 
for each configuration.   

II. EXISTING RESEARCH WORK ON HARDWARE SUPPORT 
FOR K-MEANS CLUSTERING 

We investigated existing research work on hardware 
support for K-Means Clustering algorithm.  

Hardware-software co-design solutions were proposed in 
[7],[13],[14], specifically for spectral and hyper-spectral 
image analysis applications. In this case, the host-processor 
off-loads only the compute-intensive Distance Measure to a 
dedicated hardware co-processor on a different platform, 
thus incurring high communication overhead between the 
two processors.  

In [17], a hardware design was proposed for a modified 
version [11] of the K-Means Clustering. This design can 
only process small datasets, and can only function efficiently 
when the clusters are distributed far apart.  

Parameterized hardware designs for K-Means Clustering 
were proposed in [1],[10] using Manhattan Distance. The 
hardware designs claimed to achieve higher speedup 
compared to their software counter-part. However, the 
proposed hardware designs and the software-only designs 
were executed on different platforms and on different 
processors. For [1], the comparison was with MatLab 
simulation. In addition, it is designed to process only a fixed 
number of vectors and a fixed number of clusters [10], 
although the design is claimed to be parameterized.   

In [12], a parallel hardware design was proposed, where 
Manhattan Distance was executed in parallel. The design 
achieved a speedup of 3, compared to the existing FPGA-
based hardware designs for the K-Means Clustering. 
However, the proposed design was implemented on an 
advance Virtex-6 FPGA, whereas designs used for 
comparison purposes were implemented on older Xilinx 
FPGAs. Since the CMOS process technology of an FPGA 
has a significant impact on the frequency and the occupied 
area of the design, these comparisons are not necessarily fair. 
Furthermore, system-level designs were not proposed, which 
is essential when processing a large volume of data that 
typically exists in many data mining techniques.    

The above investigations revealed several issues in the 
existing hardware designs for the K-Means Clustering: 
Manhattan Distance is used instead of Euclidian Distance, 
which lowers the accuracy of the Distance Measure [5]; 
integer division was used, which also affects the accuracy of 
both the Distance and Centroid Measure computations; 
proposed hardware designs and their software counter-parts 
were executed on different platforms and different 

processors, thus the performance comparisons are not 
necessarily fair; most proposed designs, except [1], lack the 
industry standard protocols for communicating between the 
host-processor and the FPGA; most of these designs were 
implemented for specific applications, accordingly the 
datasets and the parameters are fixed, thus can not be 
modified for other applications with different parameters.  

In this research work, we propose a novel and efficient 
hardware architecture for the K-Means Clustering algorithm, 
while addressing the aforementioned issues in the existing 
designs. 

III. DESIGN APPROACH AND DEVELOPMENT PLATFORM 
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Figure 1.  Hierarchical Platform-Based Design Approach. 

In our designs, both software and hardware versions of 
various operations are implemented using a hierarchical 
platform-based design approach to facilitate component 
reuse. As depicted in Fig. 1, our design consists of different 
levels of abstractions, where higher-level functions utilize 
lower-level sub-functions and operators.  

The hardware modules for the adder and the subtractor 
are designed using Verilog, while the multiplier [24] and the 
divider [23] are selected from the Xilinx IP core library. The 
fundamental hardware modules are designed using integer 
operators, except the division, which uses a fixed-point 
divider. The fundamental software modules are designed in 
similar fashion. The MicroBlaze is configured to use a 
floating-point unit to perform the division operation. 

All our hardware and software experiments are carried 
out on the Xilinx ML605 development platform. This 
platform utilizes a Xilinx Virtex-6 XC6VLX240T-
1FFG1156 FPGA, which consists of MicroBlaze soft 
processors, 37680 slices, 2MB of BRAMs (Block Random 
Access Memory), and 512MB DDR3-SDRAM (Double-
Data-Rate Synchronous Random Access Memory) external 
memory (to hold large volume of data). The ML605 has 
several external non-volatile memories including: 128MB of 
Platform Flash XL, 32MB BPI Linear Flash, and 2GB 
Compact Flash, to hold the configuration bitstreams.  

Our customized hardware modules are designed in mixed 
VHDL and Verilog. They are executed on the Virtex-6 
FPGA (running at 100MHz) for correctness and performance 
verification. Xilinx ISE 14.7 and XPS 14.7 are used for the 
hardware designs. ModelSim SE and Xilinx ChipscopePro 
14.7 are used to verify the results and functionalities of the 



designs. Our software modules are written in C and executed 
on the MicroBlaze soft processor (running at 100MHz) on 
the same FPGA (for fair comparison purposes) with level II 
optimization. Xilinx XPS 14.7 and SDK 14.7 are used to 
verify the software modules.  

A user-designed hardware counter is used to measure the 
execution time in clock cycles for both the hardware and 
software designs. The performance gain or speedup resulting 
from the use of hardware over software is computed using 
the following equation: 

)e(HardwareecutionTimImprovedEx
)e(SoftwareecutionTimBaselineExSpeedup =      (1) 

During the initial design and development phase, we used 
a small synthetic data set (consisting of 10 of 2-attribute 
vectors) to perform our experiments. K is considered as 4, 
thus having 4 clusters. The results are manually evaluated 
and compared with the experimental results for both the 
hardware and software designs to verify the correctness.  

For the remaining experiments, we decide to use a real 
benchmark dataset, particularly designed for clustering. After 
investigating several database archives, we decide on a 
benchmark dataset for “Wholesale Customer Data” [2] from 
the UCI Machine Learning Repository. This dataset has 440 
records (or vectors) of integer data, each having 8 attributes. 
The dataset represents the clients of a wholesale distributor. 
It provides the annual customers’ spending on six different 
product categories from two different channels.  

A. System-Level Architecture 
Fig. 2 illustrates the system-level interfacing for our 

hardware and software designs for the K-Means Clustering. 
Since the 2MB on-chip memory in Virtex-6 FPGA is not 
sufficient to store a large volume of real data found in many 
data mining applications, we integrated a 512MB DDR3-
SDRAM [25] into the system. DDR3-SDRAM and the 
DDR3-SDRAM memory controller run at 200MHz, while 
the rest of the system is running at 100 MHz. As shown in 
the Fig. 2, the AXI (Advanced Extensible Interface) acts as 
the glue logic for the whole system.   

 

Figure 2.  System-Level Architecture Block Diagram. 

We partitioned our hardware architecture (i.e., user-
designed module in Fig. 2) into two separate modules: K-
Means Top and K-Means Register Interface. The K-Means 

Register Interface module provides necessary information to 
the K-Means Top module, including the specific addresses to 
access the DDR3-SDRAM, and the required amount of data 
to be transferred. 

In order to communicate with the MicroBlaze and the 
DDR3-SDRAM, the user-designed hardware module is 
connected to the AXI4 bus [21] through the AXI Intellectual 
Property Interface (IPIF) module, using a set of ports called 
Intellectual Property Interconnect (IPIC). With this AXI 
system-level interface, the user-designed hardware can 
receive a signal from the MicroBlaze and start processing, 
read/write data/results from/to the SDRAM, and send a 
signal to the MicroBlaze when the execution is completed. 

The MicroBlaze processor [25] also communicates with 
other peripherals via AXI bus. The processor is configured to 
have 128KB for the Instruction and Data Caches, which is 
the minimum on-chip memory, required to processes the 
software designs. 

From our previous work on hardware support for data 
mining applications [16], it was observed that a significant 
amount of time was spent on accessing DDR3-SDRAM 
external memory, which is a major performance bottleneck. 
For the current system-level design, we incorporated several 
techniques, including AXI burst and pre-fetching techniques, 
to reduce the memory access latency. In this case, the user-
designed hardware is enhanced with burst reads/writes 
from/to SDRAM through the IPIF module. In addition, the 
data for specific computation is pre-fetched by the Data 
Engine to an internal pre-fetch buffer (Fig. 4 in Section IV). 
The pre-fetching technique is discussed in Section IV.    

Data Region

Not Used

Not Used

Cluster 
Center 
Region

Not Used

StartAddrD

StartAddrK

(Starting address of 
Data region)

(Starting address of 
Cluster Center region)

Size = Number of data vectors * 
(Number of Attributes+1) * 4 bytes

Size = Number of Cluster Centers * 
(Number of Attributes+1) * 4 bytes

32 bits
Each attribute of the data 
vector occupies a 32 bit 
location in the memory

 
Figure 3.  DDR3-SDRAM Memory Organization. 

For our designs, as illustrated in Fig. 3, we partitioned the 
DDR3-SDRAM memory into two regions: Data Vector and 
Cluster Center. The MicroBlaze processor maps these 
regions to non-overlapping memory locations. The processor 
initializes the Cluster Center region by randomly selecting a 
required number of vectors from the Data Vector region. The 
final Cluster Centers are updated in the Cluster Center region 
after the completion of the K-Means Clustering algorithm. 

IV. EMBEDDED HARDWARE ARCHITECTURE FOR K-
MEANS CLUSTERING 

In this section, we introduce our embedded hardware 
architecture for the K-Means Clustering algorithm. The 
hardware architecture for the K-Means Top module, as 
shown in Fig. 4, consists of several sub-modules: Data 



Engine, Data Pre-fetch Memory, Cluster Memory, Distance 
Measure computation, and Centroid Measure computation.  
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Figure 4.  K-Means Top Module. 

The Data Engine is responsible for all the data transfers 
between the user-designed hardware and the DDR3-
SDRAM. The data fetched from the SDRAM is aligned with 
the internal data structure and buffered to the internal pre-
fetch memory. Instead of single reads/writes, AXI burst is 
used for data transfer to reduce the memory access latency 
between the user-designed hardware and the SDRAM. 

The Data Pre-fetch Memory and Cluster Memory are 
designed using the BRAMs [22] from the Xilinx IP core 
library. The Data Pre-fetch Memory has one buffer to read 
data and another buffer to write data.  

Firstly, the initial Cluster Centers are fetched from the 
Cluster Center region of the DDR3-SDRAM, and stored in 
the internal Cluster Memory. Secondly, the K-Means 
Clustering is performed. The K-Means Clustering algorithm 
consists of 2 major steps. The first step is to compute the 
Distance Measure, and the second step is to compute the 
Centroid Measure. This is an iterative process, where these 
two steps are repeated. At the end of each iteration, the 
interim Cluster Centers are re-evaluated and stored in the 
internal Cluster Memory. This iterative process continues 
until a specified or a maximum number of iterations is 
reached or until the Clusters Centers converge to local 
minima. Next, the final Cluster Centers are written to the 
Cluster Center region of the DDR3-SDRAM from the 
internal Cluster Memory.  

After the execution of the K-Means algorithm, each 
vector in the data set belongs to a specific Cluster Center. 
The number of vectors per cluster (defined by a Cluster 
Center) is also specified in the Cluster Center region of the 
DDR3-SDRAM. This clustering information can be used for 
subsequent data mining analysis such as Data Abstraction.  

A. Distance Measure Hardware Design 
For our hardware design, we selected the Euclidian 

Distance over other Distance Measure computations, due to 
its accuracy [5]. The origianl equation for the Euclidian 
Distance is as follows:  

=

−=
n

k
kk qpqpd

1

2),(       (2) 

where n is the total number of attributes; pk and qk are the 
kth attribute of the two vectors p and q respectively.  

We modified the above equation slightly, and replaced 
the resource intensive square-root function with the 
multiplier function, in order to minimize the on-chip 
hardware resources, while retaining the accuracy of the 
Euclidian Distance computation.  

=
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As depicted in Fig. 5, our embedded hardware design for 
the Distance Measure computation consists of a data path 
and a control path (CP). The data path of a single processing 
element (PE) of the Euclidian Distance Measure is designed 
in a pipelined fashion. As illustrated, the data path consists of 
a subtractor, a multiplier, an accumulator, and a comparator. 
The accumulator is designed as a sequence of an adder and 
an accumulator register with the feedback loop to the adder. 

 

Figure 5.  Euclidian Distance Measure Module. 

A single PE of the Distance Measure computes the 
distance between a Cluster Center and a vector, one distance 
computation at a time. For each vector, the nearest Cluster 
Center is found by computing the Euclidian Distance 
between that vector and the existing Cluster Centers. Then 
the corresponding vector is associated with the nearest 
Cluster Center by updating the internal Cluster Memory. 

In our design, the final Distance Measure, i.e., one 
distance computation, is the last squared term computed. 
From equation (3), this is the final accumulation results of 
the square of the difference in attributes of the vectors. In 
each iteration, a new final squared distance is compared with 
the former minimum squared distance. If it is less than the 
former, the cluster center offset and the new minima are 
updated for a particular vector. This process continues until 
all the vectors are processed and assigned to the nearest 
Cluster Center.  

In order to exploit the inherent parallelism in the 
Distance Measure computation, we employ a parallel 
processing architecture. We use multiple PEs to perform 
multiple Euclidian Distance computations in parallel. The 
number of distance computations processed in parallel 
depends on the number of Distance Measure PEs (i.e., 
number of vectors processed in parallel, P) on the chip at a 
time. Our hardware design is parameterized; by configuring 
the parameter P, the number of parallel PEs can be varied, 
during the implementation.  



B. Centroid Measure Hardware Design 
Our Centroid Measure hardware is designed according to 

the following equation:  

m

d
C

m

k k
i

== 1     (4) 

where d is a data vector in the ith cluster and m is total 
number of vectors in the ith cluster.  

As illustrated in Fig. 6, the embedded hardware design 
for the Centroid Measure computation also consists of a data 
path and a control path (CP). As shown, the data path of the 
Centroid Measure consists of an accumulator (Sum), several 
fixed-point dividers, and several rounding logic. A rounding 
logic is employed to increase the accuracy of the Mean 
computation of the Centroid Measure module.  

 

Figure 6.  Centroid Measure Module. 

Before executing the K-Means Clustering algorithm, the 
Centroid Measure module fetches the initial Cluster Centers 
from the Cluster Center region of the DDR3-SDRAM, and 
stores them in the internal Cluster Memory. During the 
execution of the algorithm, this module computes the new 
Cluster Centers, which are considered as the Centroids of the 
existing clusters. Then the new Cluster Centers are updated 
to the internal Cluster Memory. After the execution of the 
algorithm, the Centroid Measure module writes the final 
Cluster Centers to the Cluster Center region in the DDR3-
SDRAM from the internal Cluster Memory. 

The Centroid Measure computes new Cluster Centers as 
the Mean of all the vectors belonging to a particular cluster. 
In our design, from equation (4), the numerator is computed 
for an associated attribute of each vector (belonging to the 
same cluster or Cluster Centers), and only the final 
accumulation result goes through the divider. We use 8 
dividers and 8 rounding logic, one per each attribute. Thus, 
the Mean computation for all the attributes, in our case 8 
attributes, for a particular cluster is processed in parallel.  

C. Design Parameters 
Our hardware architecture for the K-Means Clustering 

algorithm is generic and parameterized. It can be generalized 
to any data mining applications that utilize this algorithm by 
configuring the parameters listed in Table I. The size of the 
dataset to be process is configured by the following 
parameters: the total number of vectors (D), the total number 
of attributes per vector (N), the number of bits of the attribute 
(W), and the total number of cluster centers or clusters (K). 
These variables can be changed externally without changing 
the underlying hardware architecture. In addition, during the 
implementation, our hardware architecture can be configured 
to incorporate varying number of parallel PEs (by 

configuring the parameter P), in order to process the 
Distance Measure computation in parallel. As illustrated in 
Table I, these parameters directly impact the dimensions 
(width and depth) of the Cluster Memory and the Data Pre-
fetch Memory of our design.  

TABLE I.  DESIGN PARAMETERS 
Parameter Default Value Description 

N 8 Total number of attributes per vector 
W 20 Size of each attribute in number of bits 
K 64 Total number of clusters for the dataset 
D 8192 Total number of vectors in the dataset 
P 8 Number of vectors computed in parallel for Distance Measure computation 
K_W Derived Width of Pre-Fetch memory to hold the entire vector in one line of memory: 

(N* W) + log2(D) 
K_MEM_W Derived Width of Cluster Memory to hold Mean value of all the vectors within a 

cluster: N*( log2(D)+ W) + log2(D) 
 

V. EXPERIMENTAL RESULTS AND ANALYSIS 
Experiments are performed on the “Wholesale Customer 

Data” [2] benchmark dataset to evaluate our embedded 
hardware architecture for the K-Means Clustering algorithm. 
The dataset consists of 440 8-attribute vectors; hence the 
data size is 3520. It should be noted that our design can be 
used to process any data set regardless of the size of the data 
set. 

For these experiments, the data are pre-fetched from the 
DDR3-SDRAM to the on-chip BRAM [22], processed, and 
some of the intermediate results are also stored in the 
BRAM, and the final results are written back to the SDRAM.  

The experiments are performed using various data sizes 
in order to examine the scalability. The number of attributes 
and number of bits of the attributes are kept the same and 
only the data size or the number of vectors is varied. 
Experiments are also performed with varying number of 
clusters in order to examine its effect on the performance-
gain for a given dataset.  

To further examine hardware advantages, a parallel 
processing architecture is employed. Multiple PEs are used 
to perform multiple Euclidian Distance computations in 
parallel. Experiments are performed using four different 
hardware configurations with varying number of PEs: 1PE, 
8PEs, 16PEs, and 32PEs.    

A. Execution Times for Embedded Hardware and Software 
In order to evaluate the performance of our embedded 

hardware designs, we design and implement embedded 
software for the K-Means Clustering algorithm. The 
software design is executed on the MicroBlaze processor on 
the same development platform.  

The execution times for both the hardware and software 
designs are obtained using a hardware timer. The execution 
time is measured in clock cycles, which is a standard unit; 
hence can be used to estimate the time/speedup of the K-
Means Clustering performed on different platforms.  

The execution times for four different hardware 
configurations (Hw) and the software design (Sw) for 
different data sizes (i.e., varying number of vectors) and for 
varying number of clusters are presented in Tables II -V. The 
execution times for 8, 16, 24, and 32 clusters are presented in 
Tables II, III, IV, and V respectively. The number of 



iterations taken for the K-Means Clustering algorithm to 
converge is presented in column 3. 

Since a normal graph would not give us much insight 
into the execution characteristics, a logarithmic graph is used 
for the execution times for the K-Means Clustering 
algorithm for both the hardware and software designs for 
varying number of clusters.  

TABLE II.  EXECUTION TIMES FOR FOUR HARDWARE 
CONFIGURATIONS AND SOFTWARE ON MICROBLAZE FOR 8 CLUSTERS 

Execution Time in clk_cycles Data 
Size 

No. of 
Vectors 

No. of 
Iterations Sw Hw (1PE) Hw (8PE) Hw (16PE) Hw (32PE) 

352 44 9 2818971 122766 22469 15641 14209
704 88 9 4402706 244274 41047 28956 25047

1056 132 9 5978004 365566 61439 42349 37472
1408 176 14 11735755 757620 124386 85110 77035
1760 220 19 19240848 1284089 211747 143125 129208
2112 264 24 28542706 1945471 316447 216287 196355
2464 308 15 20455800 1418280 231861 157665 142427
2816 352 18 27674706 1945048 315243 213589 194979
3168 396 21 35902646 2552242 415507 279801 256439
3520 440 26 49004681 3510962 567993 386277 352386

  
TABLE III.  EXECUTION TIMES FOR FOUR HARDWARE 

CONFIGURATIONS AND SOFTWARE ON MICROBLAZE FOR 16 CLUSTERS 
Execution Time in clk_cycles Data 

Size 
No. of 

Vectors 
No. of 

Iterations Sw Hw (1PE) Hw (8PE) Hw (16PE) Hw (32PE) 
352 44 4 2444617 101949 16709 10456 8740
704 88 6 5708487 303082 45187 28740 20272

1056 132 9 11578280 680025 102230 62597 43686
1408 176 10 16237960 1006633 147401 87237 60678
1760 220 22 43125868 2765596 408583 239538 160199
2112 264 16 36759982 2413223 351006 209224 141089
2464 308 18 47439978 3166746 464218 274632 180442
2816 352 17 50485709 3417651 495818 289587 192196
3168 396 22 72694419 4974745 726383 422578 281730
3520 440 22 80088142 5527472 800692 470977 309363

  
TABLE IV.  EXECUTION TIMES FOR FOUR HARDWARE 

CONFIGURATIONS AND SOFTWARE ON MICROBLAZE FOR 24 CLUSTERS 
Execution Time in clk_cycles Data 

Size 
No. of 

Vectors 
No. of 

Iterations Sw Hw (1PE) Hw (8PE) Hw (16PE) Hw (32PE) 
352 44 4 3616875 149021 23303 13883 11070
704 88 8 11253387 590302 83689 51235 33534

1056 132 13 24818972 1435659 206313 121605 80507
1408 176 8 19249929 1177882 164821 93444 61586
1760 220 16 46479140 2941797 415988 233957 146122
2112 264 16 54481907 3529233 490881 281528 178450
2464 308 21 81981553 5402688 758299 431816 264794
2816 352 25 110011991 7349814 1020043 571595 352201
3168 396 20 97948258 6614384 924968 516768 322250
3520 440 15 80938575 5512239 764317 432538 264069

  
TABLE V.  EXECUTION TIMES FOR FOUR HARDWARE 

CONFIGURATIONS AND SOFTWARE ON MICROBLAZE FOR 32 CLUSTERS 
Execution Time in clk_cycles Data 

Size 
No. of 

Vectors 
No. of 

Iterations Sw Hw (1PE) Hw (8PE) Hw (16PE) Hw (32PE) 
352 44 4 4795571 196096 29912 17269 13394
704 88 5 9323831 486366 67341 40400 25355

1056 132 15 37890866 2179917 305839 176379 113144
1408 176 12 38286260 2324429 317090 175206 111603
1760 220 12 46173694 2904480 401305 220334 132315
2112 264 17 76723876 4935507 670260 375952 230509
2464 308 14 72414016 4741358 650454 362451 214129
2816 352 14 81625616 5418353 734624 402163 238540
3168 396 18 116780861 7836239 1070727 584575 352475
3520 440 33 235818153 15959500 2160999 1196031 703255

  
Fig. 7 illustrates the execution times versus the data sizes 

(number of vectors) for different hardware configurations 
(with varying number of PEs) and software on MicoBlaze 
for 32 clusters, whereas the Fig. 8 shows the execution times 
versus the number of iterations for different hardware 
configurations (with varying number of PEs) and software 
on MicoBlaze for 32 clusters. The top line of the graphs 
indicates the execution times for software on MicroBlaze, 
whereas the bottom line indicates the execution time for 
hardware configuration with 32 PEs.   

From Fig. 7 and Fig. 8, it can be observed that the 
execution time for the K-Means Clustering increases, but not 
linearly, for different hardware configurations (with varying 
number of PEs) and for software on MicroBlaze. This is 
expected, since the execution time depends not only on the 
size of the data but also on the number of iterations taken for 
the K-Means to converge. The graphs for 8, 16, and 24 
clusters show similar behavior. 
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Figure 7.  Graph of Execution Time vs. Data Size for 32 Clusters. 
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Figure 8.  Graph of Execution Time vs. No. of Iterations for 32 Clusters. 

B. Performance Comparison: Embedded Hardware vs. 
Software on MicroBlaze 

1) For a Constant Number of Clusters: Although the 
execution times are obtained using varying number of 
clusters, to illustrate the performance gain of different 
hardware configurations (with varying number of PEs) for 
varying data sizes (number of vectors), only the results from 
the 32 clusters are used. As shown in Fig. 9, the top line of 
the graph indicates the performance gain for 32PEs, while 
the bottom line indicates the gain for 1PE. 

From Table V and Fig. 9, for a constant number of 
clusters, the average speedups for 1PE, 8PEs, and 16PEs are 
17, 121, and 216, respectively. The average speedup for 
32PEs is 343. As expected, the speedup increases with the 
increasing number of PEs, however, it does not change 
proportionately with the size of the data. This is because the 
execution time, hence the speedup, depends not only on the 



data size but also on the number of iterations. The graphs for 
8, 16, and 24 clusters show similar behavior.  
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Figure 9.  Graph of Speedup vs. Data Size for 32 Cluster. 

2) For a Constant Data Size: To illustrate the 
performance gain of the four embedded hardware 
configurations (with varying number of PEs) for varying 
number of clusters, only the results of the largest dataset of 
size 3520 is used. The execution times and the 
corresponding speedups for varying number of clusters are 
presented in Table VI.  

TABLE VI.  PERFORMANCE COMPARISON: EMBEDDED HARDWARE VS. 
SOFTWARE ON MICROBLAZE FOR VARYING NUMBER OF VECTORS 

Execution Time in clk_cycles Speedup (Sw vs. Hw) No. of 
Clusters Sw Hw (1PE) Hw (8PE) Hw (16PE) Hw (32PE) 1PE 8PE 16PE 32PE 

8 49004681 3510962 567993 386277 49004681 14 86 127 139
16 80088142 5527472 800692 470977 80088142 14 100 170 259
24 80938575 5512239 764317 432538 80938575 15 106 187 307
32 235818153 15959500 2160999 1196031 235818153 15 109 197 335
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Figure 10.  Graph of Speedup vs. Number of Clusters for Largest Data Set. 

The Fig. 10 shows the speedup versus the number of 
clusters for different hardware configurations (with varying 
number of PEs) for the largest data size of 3520. The top line 
of the graph indicates the performance gain for 32PEs, while 
the bottom line indicates the performance gain for 1PE. 

For a constant data size and for a constant number of 
PEs: From Table VI and Fig. 10, for a constant data size, by 
using the same hardware configuration (with a constant 
number of PEs) the speedup increases with the increasing 
number of clusters. For instance, for hardware configurations 
with 1PE, 8PEs, and 16PEs, the speedups increase by 7%, 

27%, and 55% respectively as the number of clusters 
increases from 8 to 32. For hardware configuration with 
32PEs the speedup increases by 141% as the number of 
clusters increases from 8 to 32.  

For a constant data size and for a constant number of 
clusters: From Table VI and Fig. 10, for a constant data size 
and for constant number of clusters (in this case 32 clusters), 
the speedup increases significantly by using a parallel 
processing architecture. By using 8PEs versus 1PE the 
speedup increases by 627%; by using 16PEs versus 1PE, the 
speedup increases by 1213%; by using 32PEs versus 1PE, 
the speedup increases by 2133%.   

As observed from Fig. 10, for 1PE, the rate of increase of 
speedup is relatively low for increasing number of clusters. 
The rate of increase of speedup significantly enhances with 
the increasing number of PEs. The rate of increase of 
speedup is the highest for 32PEs. Therefore, it can be 
concluded that for increasing number of clusters and for a 
constant data size, the performance gain improves, and the 
incremental rate of performance improvement increases with 
the increasing number of PEs.    

The above experimental results and analysis illustrate 
that by increasing the number of PEs, to compute the 
Distance Measure operation in parallel, significantly 
enhanced the speed-performance of the K-Means Clustering 
algorithm. This demonstrates that the parallelism as well as 
the pipeline nature in computations can be exploited to a 
great extent in hardware.   

C. Analysis on Resource Utilization 
In order to investigate the feasibility of our embedded 

hardware designs for different applications on different 
platforms, cost analysis on space is carried out.  

TABLE VII.  SPACE STATISTICS FOR VARIOUS HARDWARE 
CONFIGURATIONS 

Slice Logic Utilization Configuration 
Number of 

Occupied Slices 
Number of 
DSP481s 

Number of Slice 
Registers 

Number of Slice 
LUTs 

1PE 6916 88 14132 15009
8PE 8140 102 16171 19366

16PE 9820 118 18650 23741
32PE 12377 150 23412 33963

  
From Table VII, considering the total number of 

occupied slices (column 2) for each hardware configuration, 
additional space required to process 8PEs, 16PEs, and 32PEs 
are 18%, 42%, and  79%, respectively, compared to the 
space required for 1PE. The increase in occupied area is due 
to the number of PEs employed to execute the Distance 
Measure computation in parallel. Therefore, it only affects 
the hardware footprint of the user-design hardware module, 
whereas the hardware footprint of the rest of the system 
remains the same for all four hardware configurations. 

Compared to the total number of occupied slices (37680) 
in this specific FPGA, our hardware configuration with 
32PEs only occupies 33% of the chip. This demonstrates that 
we can utilize the remaining parts of the chip to incorporate 
more parallel PEs to further enhance the speed-performance.   

From Table VII, we could distinguish and predict the 
resource requirements for hardware configurations with 
varying number of parallel PEs. Also, from the performance 



comparison in Section V.B, we could predict the speedup for 
different hardware configurations with varying number of 
parallel PEs. These speed-space tradeoffs can be used to 
estimate a near optimal configuration for a given system.  

Since our hardware architecture is parameterized, the 
designer has the flexibility to build a faster design with larger 
footprint, or build a slower design that has a comparatively 
smaller footprint. The designer should carefully weigh-in the 
speed-space tradeoffs when determining the most suitable 
hardware configuration for a specific application as well as 
for a specific hardware platform.   

VI. CONCLUSION AND FUTURE WORK 
In this paper, we introduced novel and efficient hardware 

architecture for K-Means Clustering algorithm for big data 
analysis. We addressed various issues identified in the 
existing hardware designs for the K-Means Clustering in 
Section II.A. Our hardware design is generic, parameterized, 
and scalable. It can be used to process varying data sizes 
(any number of vectors and any number of attributes) and 
varying number of clusters for different applications and for 
different hardware platforms. Our design can also be 
configured to modify the number of parallel PEs to enhance 
the speed-performance. Our hardware configuration with 
32PEs is executed up to 368 times faster than its software 
counterpart. We also incorporated several techniques to 
reduce the memory access latency, which was a major 
performance bottleneck in our previous work on hardware 
support for data mining [16].  

These experimental results are encouraging and indeed 
show a great potential in implementing algorithms for big 
data analysis such as K-Means Clustering using FPGA-based 
parallel hardware. Currently, we are investigating ways to 
integrate these novel and efficient embedded architectures to 
larger systems, including big data centers and genomic 
sequencing centers, to reduce the computation burden and 
increase the efficiency of these systems.    
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