
A Fast and Scalable FPGA-Based Parallel Processing Architecture for K-Means
Clustering for Big Data Analysis

Ramprasad Raghavan and Darshika G. Perera
Department of Electrical and Computer Engineering, University of Colorado at Colorado Springs,

Colorado, USA
email: darshika.perera@uccs.edu

Abstract—The exponential growth of complex, heterogeneous,
dynamic, and unbounded data, generated by a variety of fields
including health, genomics, physics, climatology, and social
networks pose significant challenges in data processing and
desired speed-performance. Existing processor-based software-
only algorithms are incapable of analyzing and processing this
enormous amount of data, efficiently and effectively.
Consequently, some kind of hardware support is desirable to
overcome the challenges in analyzing big data. Big data
analytics involves many important data mining tasks including
clustering, which categorizes the data into meaningful groups
based on the similarity or dissimilarity among objects. In this
research work, we introduce an efficient FPGA-based parallel
processing architecture for K-means Clustering, one of the
most popular clustering algorithms. Experiments are
performed on a benchmark dataset to evaluate the feasibility
and efficiency of our hardware design. Our hardware
architecture is generic, parameterized, and scalable to support
larger and varying datasets as well as a varying number of
clusters. Our hardware configuration with 32 processing
elements (PEs) achieved 368 times speedup compared to its
software counterpart.

Keywords-Big data analysis; parallel processing architecture;
FPGAs; K-Means clustering; embedded hardware; hardware
algorithms; data mining

I. INTRODUCTION
Since the late-2000s, data acquisition techniques and data

storage media have evolved rapidly. This has resulted in an
exponential growth of complex, heterogeneous, dynamic,
and unbounded data being generated by a variety of fields
including health, genomics, physics, climatology, and social
networks. For instance, in genomics, the amount of sequence
data generated doubled every seven months within the last
decade, now producing several peta-bytes of data every year
[20]. Also, the volume of data currently produced by NASA
Earth science mission is about 12 peta-bytes, and is expected
to grow by an order of magnitude within the next five years
[4]. Analyzing and processing such an enormous amount of
data pose serious challenges to the data mining community.

Big data analytics often involves many important data
mining tasks such as [15]: classification, clustering,
regression, and association rule mining. From these, we are
focusing on the most widely used clustering and
classification. Most of today’s data mining tasks, including
clustering and classification, for big data analysis are

becoming more complex (compute/data intensive), requiring
more processing power than ever before. Also, in many
cases, the data needs to be processed in real-time to yield the
actual benefit. These constraints have a significant impact on
the speed-performance of the data mining applications.

Existing algorithms for big data analytics are typically
processor-based (software-only) designs. These processor-
based algorithms are incapable of analyzing and processing
enormous amounts of data, efficiently and effectively. A
survey done in [19] demonstrated that processor-based
computing platforms, including multi-processor, multi-core,
GPGPU (General Purpose Graphics Processing Unit) are
simply not sufficient to handle this enormous amount of
data. Consequently, new design techniques, architectures,
and computing platforms are needed to overcome the
challenges in analyzing big data.

In order to satisfy the constraints and requirements
associated with big data analytics, it is imperative to provide
some kind of hardware support. In this research work, we
investigate special-purpose hardware for big data analysis.
Special-purpose or customized hardware is optimized for a
specific application and avoids the high execution overhead
of fetch/decode/execute instructions as in processor-based
software-only designs [3]. As a result, customized hardware
provides higher speed-performance, lower power
consumption [6],[9] and area-efficiency compared to the
equivalent software running on a general-purpose processor.

Our main objective is to provide efficient hardware
architectures for big data analysis to satisfy the associated
constraints and requirements. In this work, we focus on
hardware support for clustering techniques in data mining,
specifically K-Means Clustering, one of the most popular
clustering algorithms.

We make the following contributions in this paper.
• We introduce a novel and efficient embedded

architecture for K-Means Clustering for data mining.
Our proposed architecture is generic, parameterized and
scalable. Our design can process varying data sizes (i.e.,
any number of vectors (D) and any number of attributes
(N)) and varying number of clusters (K). Our design can
be configured to have varying number of parallel PEs
(P) to further enhance the speed-performance.

• We introduce an efficient “Data Engine” to pre-fetch the
essential data (for processing) from the off-chip external
memory to the on-chip memory, thus significantly
reducing the memory access latency.

• We use a register-based interface and industry standard
AXI-bus, which would enable seamless integration of
our design to other computing platforms and systems.

• We design embedded software for K-Means Clustering
to evaluate our embedded hardware design.

• We implement different hardware configurations with
varying number of parallel PEs. We perform
experiments on these configurations with varying data
sizes and with varying number of clusters. We analyze
the timing, speed-performance, and resource utilization
for each configuration.

II. EXISTING RESEARCH WORK ON HARDWARE SUPPORT
FOR K-MEANS CLUSTERING

We investigated existing research work on hardware
support for K-Means Clustering algorithm.

Hardware-software co-design solutions were proposed in
[7],[13],[14], specifically for spectral and hyper-spectral
image analysis applications. In this case, the host-processor
off-loads only the compute-intensive Distance Measure to a
dedicated hardware co-processor on a different platform,
thus incurring high communication overhead between the
two processors.

In [17], a hardware design was proposed for a modified
version [11] of the K-Means Clustering. This design can
only process small datasets, and can only function efficiently
when the clusters are distributed far apart.

Parameterized hardware designs for K-Means Clustering
were proposed in [1],[10] using Manhattan Distance. The
hardware designs claimed to achieve higher speedup
compared to their software counter-part. However, the
proposed hardware designs and the software-only designs
were executed on different platforms and on different
processors. For [1], the comparison was with MatLab
simulation. In addition, it is designed to process only a fixed
number of vectors and a fixed number of clusters [10],
although the design is claimed to be parameterized.

In [12], a parallel hardware design was proposed, where
Manhattan Distance was executed in parallel. The design
achieved a speedup of 3, compared to the existing FPGA-
based hardware designs for the K-Means Clustering.
However, the proposed design was implemented on an
advance Virtex-6 FPGA, whereas designs used for
comparison purposes were implemented on older Xilinx
FPGAs. Since the CMOS process technology of an FPGA
has a significant impact on the frequency and the occupied
area of the design, these comparisons are not necessarily fair.
Furthermore, system-level designs were not proposed, which
is essential when processing a large volume of data that
typically exists in many data mining techniques.

The above investigations revealed several issues in the
existing hardware designs for the K-Means Clustering:
Manhattan Distance is used instead of Euclidian Distance,
which lowers the accuracy of the Distance Measure [5];
integer division was used, which also affects the accuracy of
both the Distance and Centroid Measure computations;
proposed hardware designs and their software counter-parts
were executed on different platforms and different

processors, thus the performance comparisons are not
necessarily fair; most proposed designs, except [1], lack the
industry standard protocols for communicating between the
host-processor and the FPGA; most of these designs were
implemented for specific applications, accordingly the
datasets and the parameters are fixed, thus can not be
modified for other applications with different parameters.

In this research work, we propose a novel and efficient
hardware architecture for the K-Means Clustering algorithm,
while addressing the aforementioned issues in the existing
designs.

III. DESIGN APPROACH AND DEVELOPMENT PLATFORM

K-Means
Clustering

Distance
Measure

Centroid
Measure

AddMultiply DivideSubtract
H

ig
he

r L
ev

el
 A

bs
tra

ct
io

n

Figure 1. Hierarchical Platform-Based Design Approach.

In our designs, both software and hardware versions of
various operations are implemented using a hierarchical
platform-based design approach to facilitate component
reuse. As depicted in Fig. 1, our design consists of different
levels of abstractions, where higher-level functions utilize
lower-level sub-functions and operators.

The hardware modules for the adder and the subtractor
are designed using Verilog, while the multiplier [24] and the
divider [23] are selected from the Xilinx IP core library. The
fundamental hardware modules are designed using integer
operators, except the division, which uses a fixed-point
divider. The fundamental software modules are designed in
similar fashion. The MicroBlaze is configured to use a
floating-point unit to perform the division operation.

All our hardware and software experiments are carried
out on the Xilinx ML605 development platform. This
platform utilizes a Xilinx Virtex-6 XC6VLX240T-
1FFG1156 FPGA, which consists of MicroBlaze soft
processors, 37680 slices, 2MB of BRAMs (Block Random
Access Memory), and 512MB DDR3-SDRAM (Double-
Data-Rate Synchronous Random Access Memory) external
memory (to hold large volume of data). The ML605 has
several external non-volatile memories including: 128MB of
Platform Flash XL, 32MB BPI Linear Flash, and 2GB
Compact Flash, to hold the configuration bitstreams.

Our customized hardware modules are designed in mixed
VHDL and Verilog. They are executed on the Virtex-6
FPGA (running at 100MHz) for correctness and performance
verification. Xilinx ISE 14.7 and XPS 14.7 are used for the
hardware designs. ModelSim SE and Xilinx ChipscopePro
14.7 are used to verify the results and functionalities of the

designs. Our software modules are written in C and executed
on the MicroBlaze soft processor (running at 100MHz) on
the same FPGA (for fair comparison purposes) with level II
optimization. Xilinx XPS 14.7 and SDK 14.7 are used to
verify the software modules.

A user-designed hardware counter is used to measure the
execution time in clock cycles for both the hardware and
software designs. The performance gain or speedup resulting
from the use of hardware over software is computed using
the following equation:

)e(HardwareecutionTimImprovedEx
)e(SoftwareecutionTimBaselineExSpeedup = (1)

During the initial design and development phase, we used
a small synthetic data set (consisting of 10 of 2-attribute
vectors) to perform our experiments. K is considered as 4,
thus having 4 clusters. The results are manually evaluated
and compared with the experimental results for both the
hardware and software designs to verify the correctness.

For the remaining experiments, we decide to use a real
benchmark dataset, particularly designed for clustering. After
investigating several database archives, we decide on a
benchmark dataset for “Wholesale Customer Data” [2] from
the UCI Machine Learning Repository. This dataset has 440
records (or vectors) of integer data, each having 8 attributes.
The dataset represents the clients of a wholesale distributor.
It provides the annual customers’ spending on six different
product categories from two different channels.

A. System-Level Architecture
Fig. 2 illustrates the system-level interfacing for our

hardware and software designs for the K-Means Clustering.
Since the 2MB on-chip memory in Virtex-6 FPGA is not
sufficient to store a large volume of real data found in many
data mining applications, we integrated a 512MB DDR3-
SDRAM [25] into the system. DDR3-SDRAM and the
DDR3-SDRAM memory controller run at 200MHz, while
the rest of the system is running at 100 MHz. As shown in
the Fig. 2, the AXI (Advanced Extensible Interface) acts as
the glue logic for the whole system.

Figure 2. System-Level Architecture Block Diagram.

We partitioned our hardware architecture (i.e., user-
designed module in Fig. 2) into two separate modules: K-
Means Top and K-Means Register Interface. The K-Means

Register Interface module provides necessary information to
the K-Means Top module, including the specific addresses to
access the DDR3-SDRAM, and the required amount of data
to be transferred.

In order to communicate with the MicroBlaze and the
DDR3-SDRAM, the user-designed hardware module is
connected to the AXI4 bus [21] through the AXI Intellectual
Property Interface (IPIF) module, using a set of ports called
Intellectual Property Interconnect (IPIC). With this AXI
system-level interface, the user-designed hardware can
receive a signal from the MicroBlaze and start processing,
read/write data/results from/to the SDRAM, and send a
signal to the MicroBlaze when the execution is completed.

The MicroBlaze processor [25] also communicates with
other peripherals via AXI bus. The processor is configured to
have 128KB for the Instruction and Data Caches, which is
the minimum on-chip memory, required to processes the
software designs.

From our previous work on hardware support for data
mining applications [16], it was observed that a significant
amount of time was spent on accessing DDR3-SDRAM
external memory, which is a major performance bottleneck.
For the current system-level design, we incorporated several
techniques, including AXI burst and pre-fetching techniques,
to reduce the memory access latency. In this case, the user-
designed hardware is enhanced with burst reads/writes
from/to SDRAM through the IPIF module. In addition, the
data for specific computation is pre-fetched by the Data
Engine to an internal pre-fetch buffer (Fig. 4 in Section IV).
The pre-fetching technique is discussed in Section IV.

Data Region

Not Used

Not Used

Cluster
Center
Region

Not Used

StartAddrD

StartAddrK

(Starting address of
Data region)

(Starting address of
Cluster Center region)

Size = Number of data vectors *
(Number of Attributes+1) * 4 bytes

Size = Number of Cluster Centers *
(Number of Attributes+1) * 4 bytes

32 bits
Each attribute of the data
vector occupies a 32 bit
location in the memory

Figure 3. DDR3-SDRAM Memory Organization.

For our designs, as illustrated in Fig. 3, we partitioned the
DDR3-SDRAM memory into two regions: Data Vector and
Cluster Center. The MicroBlaze processor maps these
regions to non-overlapping memory locations. The processor
initializes the Cluster Center region by randomly selecting a
required number of vectors from the Data Vector region. The
final Cluster Centers are updated in the Cluster Center region
after the completion of the K-Means Clustering algorithm.

IV. EMBEDDED HARDWARE ARCHITECTURE FOR K-
MEANS CLUSTERING

In this section, we introduce our embedded hardware
architecture for the K-Means Clustering algorithm. The
hardware architecture for the K-Means Top module, as
shown in Fig. 4, consists of several sub-modules: Data

Engine, Data Pre-fetch Memory, Cluster Memory, Distance
Measure computation, and Centroid Measure computation.

KMeansTop
Data

Prefetch
Memory

(Read/Write)

DataEngine
Data

Prefetch
Memory
(Rd/Wr)

Cluster
Memory

A
rb

Ar
b

Data
Write

Engine

To AXI
Interconnect

Data
Read

Engine

AXI

To Kmeans
Register
Interface

Distance Measure

Centroid Measure

Status/Control signals

AX
I M

as
te

r I
F IPIC

KMeansTop
Data

Prefetch
Memory

(Read/Write)

DataEngine
Data

Prefetch
Memory
(Rd/Wr)

Cluster
Memory

A
rb

Ar
b

Data
Write

Engine

To AXI
Interconnect

Data
Read

Engine

AXI

To Kmeans
Register
Interface

Distance Measure

Centroid Measure

Status/Control signals

AX
I M

as
te

r I
F IPIC

Figure 4. K-Means Top Module.

The Data Engine is responsible for all the data transfers
between the user-designed hardware and the DDR3-
SDRAM. The data fetched from the SDRAM is aligned with
the internal data structure and buffered to the internal pre-
fetch memory. Instead of single reads/writes, AXI burst is
used for data transfer to reduce the memory access latency
between the user-designed hardware and the SDRAM.

The Data Pre-fetch Memory and Cluster Memory are
designed using the BRAMs [22] from the Xilinx IP core
library. The Data Pre-fetch Memory has one buffer to read
data and another buffer to write data.

Firstly, the initial Cluster Centers are fetched from the
Cluster Center region of the DDR3-SDRAM, and stored in
the internal Cluster Memory. Secondly, the K-Means
Clustering is performed. The K-Means Clustering algorithm
consists of 2 major steps. The first step is to compute the
Distance Measure, and the second step is to compute the
Centroid Measure. This is an iterative process, where these
two steps are repeated. At the end of each iteration, the
interim Cluster Centers are re-evaluated and stored in the
internal Cluster Memory. This iterative process continues
until a specified or a maximum number of iterations is
reached or until the Clusters Centers converge to local
minima. Next, the final Cluster Centers are written to the
Cluster Center region of the DDR3-SDRAM from the
internal Cluster Memory.

After the execution of the K-Means algorithm, each
vector in the data set belongs to a specific Cluster Center.
The number of vectors per cluster (defined by a Cluster
Center) is also specified in the Cluster Center region of the
DDR3-SDRAM. This clustering information can be used for
subsequent data mining analysis such as Data Abstraction.

A. Distance Measure Hardware Design
For our hardware design, we selected the Euclidian

Distance over other Distance Measure computations, due to
its accuracy [5]. The origianl equation for the Euclidian
Distance is as follows:

=

−=
n

k
kk qpqpd

1

2),((2)

where n is the total number of attributes; pk and qk are the
kth attribute of the two vectors p and q respectively.

We modified the above equation slightly, and replaced
the resource intensive square-root function with the
multiplier function, in order to minimize the on-chip
hardware resources, while retaining the accuracy of the
Euclidian Distance computation.

=

−=
n

k
kk qpqpd

1

22),((3)

As depicted in Fig. 5, our embedded hardware design for
the Distance Measure computation consists of a data path
and a control path (CP). The data path of a single processing
element (PE) of the Euclidian Distance Measure is designed
in a pipelined fashion. As illustrated, the data path consists of
a subtractor, a multiplier, an accumulator, and a comparator.
The accumulator is designed as a sequence of an adder and
an accumulator register with the feedback loop to the adder.

Figure 5. Euclidian Distance Measure Module.

A single PE of the Distance Measure computes the
distance between a Cluster Center and a vector, one distance
computation at a time. For each vector, the nearest Cluster
Center is found by computing the Euclidian Distance
between that vector and the existing Cluster Centers. Then
the corresponding vector is associated with the nearest
Cluster Center by updating the internal Cluster Memory.

In our design, the final Distance Measure, i.e., one
distance computation, is the last squared term computed.
From equation (3), this is the final accumulation results of
the square of the difference in attributes of the vectors. In
each iteration, a new final squared distance is compared with
the former minimum squared distance. If it is less than the
former, the cluster center offset and the new minima are
updated for a particular vector. This process continues until
all the vectors are processed and assigned to the nearest
Cluster Center.

In order to exploit the inherent parallelism in the
Distance Measure computation, we employ a parallel
processing architecture. We use multiple PEs to perform
multiple Euclidian Distance computations in parallel. The
number of distance computations processed in parallel
depends on the number of Distance Measure PEs (i.e.,
number of vectors processed in parallel, P) on the chip at a
time. Our hardware design is parameterized; by configuring
the parameter P, the number of parallel PEs can be varied,
during the implementation.

B. Centroid Measure Hardware Design
Our Centroid Measure hardware is designed according to

the following equation:

m

d
C

m

k k
i

== 1 (4)

where d is a data vector in the ith cluster and m is total
number of vectors in the ith cluster.

As illustrated in Fig. 6, the embedded hardware design
for the Centroid Measure computation also consists of a data
path and a control path (CP). As shown, the data path of the
Centroid Measure consists of an accumulator (Sum), several
fixed-point dividers, and several rounding logic. A rounding
logic is employed to increase the accuracy of the Mean
computation of the Centroid Measure module.

Figure 6. Centroid Measure Module.

Before executing the K-Means Clustering algorithm, the
Centroid Measure module fetches the initial Cluster Centers
from the Cluster Center region of the DDR3-SDRAM, and
stores them in the internal Cluster Memory. During the
execution of the algorithm, this module computes the new
Cluster Centers, which are considered as the Centroids of the
existing clusters. Then the new Cluster Centers are updated
to the internal Cluster Memory. After the execution of the
algorithm, the Centroid Measure module writes the final
Cluster Centers to the Cluster Center region in the DDR3-
SDRAM from the internal Cluster Memory.

The Centroid Measure computes new Cluster Centers as
the Mean of all the vectors belonging to a particular cluster.
In our design, from equation (4), the numerator is computed
for an associated attribute of each vector (belonging to the
same cluster or Cluster Centers), and only the final
accumulation result goes through the divider. We use 8
dividers and 8 rounding logic, one per each attribute. Thus,
the Mean computation for all the attributes, in our case 8
attributes, for a particular cluster is processed in parallel.

C. Design Parameters
Our hardware architecture for the K-Means Clustering

algorithm is generic and parameterized. It can be generalized
to any data mining applications that utilize this algorithm by
configuring the parameters listed in Table I. The size of the
dataset to be process is configured by the following
parameters: the total number of vectors (D), the total number
of attributes per vector (N), the number of bits of the attribute
(W), and the total number of cluster centers or clusters (K).
These variables can be changed externally without changing
the underlying hardware architecture. In addition, during the
implementation, our hardware architecture can be configured
to incorporate varying number of parallel PEs (by

configuring the parameter P), in order to process the
Distance Measure computation in parallel. As illustrated in
Table I, these parameters directly impact the dimensions
(width and depth) of the Cluster Memory and the Data Pre-
fetch Memory of our design.

TABLE I. DESIGN PARAMETERS
Parameter Default Value Description

N 8 Total number of attributes per vector
W 20 Size of each attribute in number of bits
K 64 Total number of clusters for the dataset
D 8192 Total number of vectors in the dataset
P 8 Number of vectors computed in parallel for Distance Measure computation
K_W Derived Width of Pre-Fetch memory to hold the entire vector in one line of memory:

(N* W) + log2(D)
K_MEM_W Derived Width of Cluster Memory to hold Mean value of all the vectors within a

cluster: N*(log2(D)+ W) + log2(D)

V. EXPERIMENTAL RESULTS AND ANALYSIS
Experiments are performed on the “Wholesale Customer

Data” [2] benchmark dataset to evaluate our embedded
hardware architecture for the K-Means Clustering algorithm.
The dataset consists of 440 8-attribute vectors; hence the
data size is 3520. It should be noted that our design can be
used to process any data set regardless of the size of the data
set.

For these experiments, the data are pre-fetched from the
DDR3-SDRAM to the on-chip BRAM [22], processed, and
some of the intermediate results are also stored in the
BRAM, and the final results are written back to the SDRAM.

The experiments are performed using various data sizes
in order to examine the scalability. The number of attributes
and number of bits of the attributes are kept the same and
only the data size or the number of vectors is varied.
Experiments are also performed with varying number of
clusters in order to examine its effect on the performance-
gain for a given dataset.

To further examine hardware advantages, a parallel
processing architecture is employed. Multiple PEs are used
to perform multiple Euclidian Distance computations in
parallel. Experiments are performed using four different
hardware configurations with varying number of PEs: 1PE,
8PEs, 16PEs, and 32PEs.

A. Execution Times for Embedded Hardware and Software
In order to evaluate the performance of our embedded

hardware designs, we design and implement embedded
software for the K-Means Clustering algorithm. The
software design is executed on the MicroBlaze processor on
the same development platform.

The execution times for both the hardware and software
designs are obtained using a hardware timer. The execution
time is measured in clock cycles, which is a standard unit;
hence can be used to estimate the time/speedup of the K-
Means Clustering performed on different platforms.

The execution times for four different hardware
configurations (Hw) and the software design (Sw) for
different data sizes (i.e., varying number of vectors) and for
varying number of clusters are presented in Tables II -V. The
execution times for 8, 16, 24, and 32 clusters are presented in
Tables II, III, IV, and V respectively. The number of

iterations taken for the K-Means Clustering algorithm to
converge is presented in column 3.

Since a normal graph would not give us much insight
into the execution characteristics, a logarithmic graph is used
for the execution times for the K-Means Clustering
algorithm for both the hardware and software designs for
varying number of clusters.

TABLE II. EXECUTION TIMES FOR FOUR HARDWARE
CONFIGURATIONS AND SOFTWARE ON MICROBLAZE FOR 8 CLUSTERS

Execution Time in clk_cycles Data
Size

No. of
Vectors

No. of
Iterations Sw Hw (1PE) Hw (8PE) Hw (16PE) Hw (32PE)

352 44 9 2818971 122766 22469 15641 14209
704 88 9 4402706 244274 41047 28956 25047

1056 132 9 5978004 365566 61439 42349 37472
1408 176 14 11735755 757620 124386 85110 77035
1760 220 19 19240848 1284089 211747 143125 129208
2112 264 24 28542706 1945471 316447 216287 196355
2464 308 15 20455800 1418280 231861 157665 142427
2816 352 18 27674706 1945048 315243 213589 194979
3168 396 21 35902646 2552242 415507 279801 256439
3520 440 26 49004681 3510962 567993 386277 352386

TABLE III. EXECUTION TIMES FOR FOUR HARDWARE

CONFIGURATIONS AND SOFTWARE ON MICROBLAZE FOR 16 CLUSTERS
Execution Time in clk_cycles Data

Size
No. of

Vectors
No. of

Iterations Sw Hw (1PE) Hw (8PE) Hw (16PE) Hw (32PE)
352 44 4 2444617 101949 16709 10456 8740
704 88 6 5708487 303082 45187 28740 20272

1056 132 9 11578280 680025 102230 62597 43686
1408 176 10 16237960 1006633 147401 87237 60678
1760 220 22 43125868 2765596 408583 239538 160199
2112 264 16 36759982 2413223 351006 209224 141089
2464 308 18 47439978 3166746 464218 274632 180442
2816 352 17 50485709 3417651 495818 289587 192196
3168 396 22 72694419 4974745 726383 422578 281730
3520 440 22 80088142 5527472 800692 470977 309363

TABLE IV. EXECUTION TIMES FOR FOUR HARDWARE

CONFIGURATIONS AND SOFTWARE ON MICROBLAZE FOR 24 CLUSTERS
Execution Time in clk_cycles Data

Size
No. of

Vectors
No. of

Iterations Sw Hw (1PE) Hw (8PE) Hw (16PE) Hw (32PE)
352 44 4 3616875 149021 23303 13883 11070
704 88 8 11253387 590302 83689 51235 33534

1056 132 13 24818972 1435659 206313 121605 80507
1408 176 8 19249929 1177882 164821 93444 61586
1760 220 16 46479140 2941797 415988 233957 146122
2112 264 16 54481907 3529233 490881 281528 178450
2464 308 21 81981553 5402688 758299 431816 264794
2816 352 25 110011991 7349814 1020043 571595 352201
3168 396 20 97948258 6614384 924968 516768 322250
3520 440 15 80938575 5512239 764317 432538 264069

TABLE V. EXECUTION TIMES FOR FOUR HARDWARE

CONFIGURATIONS AND SOFTWARE ON MICROBLAZE FOR 32 CLUSTERS
Execution Time in clk_cycles Data

Size
No. of

Vectors
No. of

Iterations Sw Hw (1PE) Hw (8PE) Hw (16PE) Hw (32PE)
352 44 4 4795571 196096 29912 17269 13394
704 88 5 9323831 486366 67341 40400 25355

1056 132 15 37890866 2179917 305839 176379 113144
1408 176 12 38286260 2324429 317090 175206 111603
1760 220 12 46173694 2904480 401305 220334 132315
2112 264 17 76723876 4935507 670260 375952 230509
2464 308 14 72414016 4741358 650454 362451 214129
2816 352 14 81625616 5418353 734624 402163 238540
3168 396 18 116780861 7836239 1070727 584575 352475
3520 440 33 235818153 15959500 2160999 1196031 703255

Fig. 7 illustrates the execution times versus the data sizes

(number of vectors) for different hardware configurations
(with varying number of PEs) and software on MicoBlaze
for 32 clusters, whereas the Fig. 8 shows the execution times
versus the number of iterations for different hardware
configurations (with varying number of PEs) and software
on MicoBlaze for 32 clusters. The top line of the graphs
indicates the execution times for software on MicroBlaze,
whereas the bottom line indicates the execution time for
hardware configuration with 32 PEs.

From Fig. 7 and Fig. 8, it can be observed that the
execution time for the K-Means Clustering increases, but not
linearly, for different hardware configurations (with varying
number of PEs) and for software on MicroBlaze. This is
expected, since the execution time depends not only on the
size of the data but also on the number of iterations taken for
the K-Means to converge. The graphs for 8, 16, and 24
clusters show similar behavior.

Execution Time vs. Data Size

0.00

5.00

10.00

15.00

20.00

25.00

30.00

352 704 1056 1408 1760 2112 2464 2816 3168 3520

Data Size

Lo
g2

(E
xe

cu
tio

n
Ti

m
e)

Sw
Hw (1PE)
Hw (8PE)
Hw (16PE)
Hw (32PE)

Figure 7. Graph of Execution Time vs. Data Size for 32 Clusters.

Execution Time vs. No. of Iterations

0.00

5.00

10.00

15.00

20.00

25.00

30.00

4 5 12 12 14 14 15 17 18 33

No. of Iterations

Lo
g2

(E
xe

cu
tio

n
Ti

m
e)

Sw
Hw (1PE)
Hw (8PE)
Hw (16PE)
Hw (32PE)

Figure 8. Graph of Execution Time vs. No. of Iterations for 32 Clusters.

B. Performance Comparison: Embedded Hardware vs.
Software on MicroBlaze

1) For a Constant Number of Clusters: Although the
execution times are obtained using varying number of
clusters, to illustrate the performance gain of different
hardware configurations (with varying number of PEs) for
varying data sizes (number of vectors), only the results from
the 32 clusters are used. As shown in Fig. 9, the top line of
the graph indicates the performance gain for 32PEs, while
the bottom line indicates the gain for 1PE.

From Table V and Fig. 9, for a constant number of
clusters, the average speedups for 1PE, 8PEs, and 16PEs are
17, 121, and 216, respectively. The average speedup for
32PEs is 343. As expected, the speedup increases with the
increasing number of PEs, however, it does not change
proportionately with the size of the data. This is because the
execution time, hence the speedup, depends not only on the

data size but also on the number of iterations. The graphs for
8, 16, and 24 clusters show similar behavior.

Speedup vs. Data Size

0

50

100

150

200

250

300

350

400

352 704 1056 1408 1760 2112 2464 2816 3168 3520

Data Size

Sp
ee

du
p

Hw (1PE)

Hw (8PE)

Hw (16PE)

Hw (32PE)

Figure 9. Graph of Speedup vs. Data Size for 32 Cluster.

2) For a Constant Data Size: To illustrate the
performance gain of the four embedded hardware
configurations (with varying number of PEs) for varying
number of clusters, only the results of the largest dataset of
size 3520 is used. The execution times and the
corresponding speedups for varying number of clusters are
presented in Table VI.

TABLE VI. PERFORMANCE COMPARISON: EMBEDDED HARDWARE VS.
SOFTWARE ON MICROBLAZE FOR VARYING NUMBER OF VECTORS

Execution Time in clk_cycles Speedup (Sw vs. Hw) No. of
Clusters Sw Hw (1PE) Hw (8PE) Hw (16PE) Hw (32PE) 1PE 8PE 16PE 32PE

8 49004681 3510962 567993 386277 49004681 14 86 127 139
16 80088142 5527472 800692 470977 80088142 14 100 170 259
24 80938575 5512239 764317 432538 80938575 15 106 187 307
32 235818153 15959500 2160999 1196031 235818153 15 109 197 335

Speedup vs. No. of Clusters

0

50

100

150

200

250

300

350

400

8 16 24 32

No. of Clusters

Sp
ee

du
p

Hw (1PE)
Hw (8PE)
Hw (16PE)
Hw (32PE)

Figure 10. Graph of Speedup vs. Number of Clusters for Largest Data Set.

The Fig. 10 shows the speedup versus the number of
clusters for different hardware configurations (with varying
number of PEs) for the largest data size of 3520. The top line
of the graph indicates the performance gain for 32PEs, while
the bottom line indicates the performance gain for 1PE.

For a constant data size and for a constant number of
PEs: From Table VI and Fig. 10, for a constant data size, by
using the same hardware configuration (with a constant
number of PEs) the speedup increases with the increasing
number of clusters. For instance, for hardware configurations
with 1PE, 8PEs, and 16PEs, the speedups increase by 7%,

27%, and 55% respectively as the number of clusters
increases from 8 to 32. For hardware configuration with
32PEs the speedup increases by 141% as the number of
clusters increases from 8 to 32.

For a constant data size and for a constant number of
clusters: From Table VI and Fig. 10, for a constant data size
and for constant number of clusters (in this case 32 clusters),
the speedup increases significantly by using a parallel
processing architecture. By using 8PEs versus 1PE the
speedup increases by 627%; by using 16PEs versus 1PE, the
speedup increases by 1213%; by using 32PEs versus 1PE,
the speedup increases by 2133%.

As observed from Fig. 10, for 1PE, the rate of increase of
speedup is relatively low for increasing number of clusters.
The rate of increase of speedup significantly enhances with
the increasing number of PEs. The rate of increase of
speedup is the highest for 32PEs. Therefore, it can be
concluded that for increasing number of clusters and for a
constant data size, the performance gain improves, and the
incremental rate of performance improvement increases with
the increasing number of PEs.

The above experimental results and analysis illustrate
that by increasing the number of PEs, to compute the
Distance Measure operation in parallel, significantly
enhanced the speed-performance of the K-Means Clustering
algorithm. This demonstrates that the parallelism as well as
the pipeline nature in computations can be exploited to a
great extent in hardware.

C. Analysis on Resource Utilization
In order to investigate the feasibility of our embedded

hardware designs for different applications on different
platforms, cost analysis on space is carried out.

TABLE VII. SPACE STATISTICS FOR VARIOUS HARDWARE
CONFIGURATIONS

Slice Logic Utilization Configuration
Number of

Occupied Slices
Number of
DSP481s

Number of Slice
Registers

Number of Slice
LUTs

1PE 6916 88 14132 15009
8PE 8140 102 16171 19366

16PE 9820 118 18650 23741
32PE 12377 150 23412 33963

From Table VII, considering the total number of

occupied slices (column 2) for each hardware configuration,
additional space required to process 8PEs, 16PEs, and 32PEs
are 18%, 42%, and 79%, respectively, compared to the
space required for 1PE. The increase in occupied area is due
to the number of PEs employed to execute the Distance
Measure computation in parallel. Therefore, it only affects
the hardware footprint of the user-design hardware module,
whereas the hardware footprint of the rest of the system
remains the same for all four hardware configurations.

Compared to the total number of occupied slices (37680)
in this specific FPGA, our hardware configuration with
32PEs only occupies 33% of the chip. This demonstrates that
we can utilize the remaining parts of the chip to incorporate
more parallel PEs to further enhance the speed-performance.

From Table VII, we could distinguish and predict the
resource requirements for hardware configurations with
varying number of parallel PEs. Also, from the performance

comparison in Section V.B, we could predict the speedup for
different hardware configurations with varying number of
parallel PEs. These speed-space tradeoffs can be used to
estimate a near optimal configuration for a given system.

Since our hardware architecture is parameterized, the
designer has the flexibility to build a faster design with larger
footprint, or build a slower design that has a comparatively
smaller footprint. The designer should carefully weigh-in the
speed-space tradeoffs when determining the most suitable
hardware configuration for a specific application as well as
for a specific hardware platform.

VI. CONCLUSION AND FUTURE WORK
In this paper, we introduced novel and efficient hardware

architecture for K-Means Clustering algorithm for big data
analysis. We addressed various issues identified in the
existing hardware designs for the K-Means Clustering in
Section II.A. Our hardware design is generic, parameterized,
and scalable. It can be used to process varying data sizes
(any number of vectors and any number of attributes) and
varying number of clusters for different applications and for
different hardware platforms. Our design can also be
configured to modify the number of parallel PEs to enhance
the speed-performance. Our hardware configuration with
32PEs is executed up to 368 times faster than its software
counterpart. We also incorporated several techniques to
reduce the memory access latency, which was a major
performance bottleneck in our previous work on hardware
support for data mining [16].

These experimental results are encouraging and indeed
show a great potential in implementing algorithms for big
data analysis such as K-Means Clustering using FPGA-based
parallel hardware. Currently, we are investigating ways to
integrate these novel and efficient embedded architectures to
larger systems, including big data centers and genomic
sequencing centers, to reduce the computation burden and
increase the efficiency of these systems.

REFERENCES
[1] Bhaskaran, V., "Paramterized Implementation of K-Means Clustering

on Reconfigurable Systems," Knoxville, 2003.
[2] Cardoso, M., Wholesale customer Data Set, University of California,

Irvine.
[3] Compton, K. and S. Hauck, “Reconfigurable Computing: A Survey of

Systems and Software”, ACM Computing Surveys, vol.34, no.2,
pp.171-210, June 2002.

[4] Earley, S. “Really, Really Big Data: NASA at the Forefront of
Analytics”, IEEE Computing Edge, May 2016.

[5] Estlick, M., M. Leeser, J. Theiler and J. J. Szymanski, "Algorithmic
Transformations in the Implementation of K-means Clustering on
Reconfigurable Hardware," in ACM/SIGDA 9th Int. Symp. on Field
Programmable Gate Arrays, 2001.

[6] Garcia, P., K. Compton, M. Schulte, E. Blem and W. Fu, “An
Overview of Reconfigurable Hardware in Embedded Systems”,
EURASIP Journal on Embedded Systems, pp.1-19, 2006.

[7] Gokhale, M., J. Frigo, K. McCabe, J. Theiler and L. Dominique,
"Early Experience with a Hybrid Processor: K-Means Clustering," in
1st Int. Conf. on Engineering of Reconfigurable Systems and
Algorithms, 2001.

[8] Hauck, S., and A. Dehlon, Reconfigurable Computing: The Theory
and Practice of FPGA-Based Computing, Morgan Kaufmann
Publishers, 2008.

[9] Hussain, H.M., K. Benkrid, H. Seker and A. T. Erdogan, "FPGA
Implementation of K-means Algorithm for Bioinformatics
Application: An Accelerated Approach to Clustering Microarray
Data," in NASA/ESA Conf. on Adaptive Hardware and Systems,
2011.

[10] Hussain, H.M., K. Benkrid, H. Seker and A. T. Erdogan, "Highly
Parameterized K-means Clustering on FPGAs: Comparative Results
with GPPs and GPUs," in Reconfigurable Computing and FPGAs, .
2011.

[11] Kanungo, T., D. M. Mount, N. S. Netanyahu, C. D. Piatko, R.
Silverman and A. Y. Wu, "An Efficient k-Means Clustering
Algorithm:Analysis and Implementation," IEEE Transcactions on
Pattern Analysis and Machine Intelligence, vol. 24, pp. 881-892, July
2002.

[12] Kutty, J.S., Farid Boussaid, Abbes Amira, "A High Speed
Configurable FPGA architecture for K-mean clustering," IEEE Int.
Symp. on Circuits and Systems, pp. 1801-1804, 2013.

[13] Lavenier, D., "FPGA implementation of the k-means clustering
algorithm for hyperspectral images," Los Alamos National
Laboratory LA-UR #00-3079, 2000.

[14] Leeser, M., P. Belanovic , M. Estlick , M. Gokhale , J. J. Szymanski
and J. Theiler, "Applying Reconfigurable Hardware to the Analysis of
Multispectral and Hyperspectral Imagery," in SPIE, The Int. Society
for Optical Engineering , 2001.

[15] Manning, D.C., Raghvan, P., and Schutze, H., “Introduction to
Information Retrieval”, Cambridge University Press, 2008.

[16] Perera, D.G., and K.F. Li, “FPGA-Based Reconfigurable Hardware
for Compute Intensive Data Mining Applications”, In Proc. of 6th
IEEE Int. Conf. on P2P, Parallel, Grid, Cloud and Internet
Computing, pp.100-108, Oct. 2011.

[17] Saegusa, T., and M. Tsutomu, "An FPGA Implementation of K-
Means Clustering for Color Images Based on KD-Tree," in Field
Programmable Logic and Applications, 2006.

[18] Salton, G., and M.J. McGill, “Introduction to Modern Information
Retrieval”, McGraw-Hill, New York, 1983.

[19] Singh, D., and C. Reddy, "A survey on platforms for big data
analytics," Journal of Big Data, 2014.

[20] Stephens, Z.D., S.Y. Lee, F. Faghri, R. Campbell, C. Zhai, M. Efron,
S. Sinha, R. Iyer and R. Gene, "Big Data: Astronomical or
Genomical?," PLoS Biol, 2015.

[21] Xilinx Inc., "LogiCORE IP AXI Interconnect (v1.06.a)," Dec. 2012.
http://www.xilinx.com/support/documentation/ip_documentation/axi_
interconnect/v1_06_a/ds768_axi_interconnect.pdf

[22] Xilinx Inc., "LogiCORE IP Block Memory Generator v7.3," 2012.
http://www.xilinx.com/support/documentation/ip_documentation/blk
_mem_gen/v7_3/pg058-blk-mem-gen.pdf

[23] Xilinx Inc., "LogiCORE IP Divider Generator v4.0," June 2011.
http://www.xilinx.com/support/documentation/ip_documentation/div
_gen/v4_0/ds819_div_gen.pdf

[24] Xilinx Inc., "LogiCORE IP Multiplier v11.2," Mar. 2011,
http://www.xilinx.com/support/documentation/ip_documentation/mul
t_gen_ds255.pdf

[25] Xilinx Inc., "MicroBlaze Processor Reference Guide," Oct. 2013.
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_
7/mb_ref_guide.pdf

[26] Xilinx Inc., "Virtex-6 FPGA Memory Interface Solutions" Mar. 2011,
http://www.xilinx.com/support/documentation/white_papers/wp469-
microblaze-for-cost-sensitive-apps.pdf.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

		2017-11-27T14:04:45-0500
	Certified PDF 2 Signature

