
1

 A Survey of Cryptographic Algorithms for
IoT Devices

Susha Surendran (NYIT, Abu Dhabi, UAE), Amira Nassef (NYIT, Abu Dhabi, UAE),
Babak D. Beheshti (NYIT, Old Westbury, New York)

Abstract— The future of Internet is “Intrnet of
Things” where trillions of physical objects, most of
them with low or extremely low resources,
communicate with each other without human
intervention. Light weight cryptography includes
cryptographic algorithms specifically meant for
extremely constrained resources. They can be applied
not only for encryption but also for hashing and
authentication under environments that are highly
constrained.� In this paper, we first discuss the need
of light weight cryptography and their design
differences with normal block ciphers. An overview of
some of the light weight cryptographic algorithms is
discussed after that. Also, we look into different types
of attacks that has been studied on some of these
ciphers. Finally, we compare the performance of some
of these ciphers on Windows and Embedded platform.

Index Terms— 3DES, AES, Blowfish,

Cryptanalysis, Cryptographic algorithms, Crypton,
Curupira, DES, DESL, DESX, DESXL, embedded
platform, Feistel Structure, Katan & Ktantan,
HIGHT, HIGHT2, Hummingbird, Hummingbird-2,
Internet of Things, KEELOQ, LBLOCK, LED, Light
weight cryptography, NOEKEON, PES, PRESENT,
mCrypton, Raspberry Pi, RC2, RC6, RSA, SEA,
Skipjack, Simon and Speck, Symmetric and
Asymmetric algorithms, TEA, XTEA and TWINE.

INTRODUCTION
Soon there will be trillions of devices on the

Internet. And the major problems that Internet of

Things (IoT) is facing are in the areas of naming,

authentication, maintenance, security and support at

this large scale. The growth of IoT will be soon in a

more general class of cyber-physical systems which

leads to technologies such as smart grids, virtual

power plants, intelligent transportation, smart homes

and smart cities. Researchers are now more focused

on specifying, detecting and resolving dependencies

across applications.

There will be a vast amount of raw data being

continuously collected in an IoT world which

requires real-time sensor data streams as well as

techniques to convert these raw data to usable

knowledge. Also there will be serious questions on

data privacy and security. Design criteria of

cryptographic algorithms intended for devices with

extremely low resources are different from that of

commonly used ones. This very specific field leads

to a branch of modern cryptography --- lightweight

cryptography.

NEED FOR LIGHT WEIGHT CRYPTOGRAPHY ALGORITHMS

As internet is growing day-by-day, security is

turning out to be the most critical and challenging

aspect of it. Cryptography, study of converting

normal data into unreadable form, is playing a vital

role in information security.

A. Cryptography algorithms
Cryptography is the art and science of keeping a

message (such as email messages, credit card

information, etc.) secure, while transmitting it in the

network by encrypting the data using encryption

algorithms. Many encryption algorithms are used in

network security. They are divided into three basic

types: Symmetric algorithms, Asymmetric (or

public-key) algorithms, and Cryptographic

protocols. According to number of keys used in

encryption and decryption, they are classified to:

Symmetric algorithms (or secret key encryption)

where one key is used to encrypt and decrypt data,

and Asymmetric (or public-key) algorithms which

use two keys i.e. private and public keys. Public key

is used for encryption and private key is used for

decryption.

Some of the important cryptographic algorithms

available in the market: Rivest-Shamir-Adleman

(RSA), Data Encryption Standard (DES) --- no longer

considered secure, Triple DES (3DES), Advanced

Encryption Standard (AES), Blowfish, RC2, and

RC6. Although those algorithms are vital in

information systems security, they consume a

significant amount of computing resources such as

CPU time, memory, and battery power.

Symmetric key encryption strength depends on

the size of key used, for example RC2 and DES

uses a 64-bit key, Triple DES (3DES) uses two 64-

bits keys, AES and RC6 use any of 128, 192 or 256

bits keys and Blowfish uses 32-448 bit range keys

(default 128 bits) [1, 2]. In this paper we will

compare the performance of cryptographic

algorithms in terms of energy, changing data types

2

such as text or document, power consumption,

changing packet size, and changing key size.

Energy consumption of different symmetric

algorithms depends on key size, as it needs more

energy to perform more operations. For example, it

is found that after only 600 encryptions of 5 MB file

using 3DES, 55% of battery power is consumed [3,

4, and 5]. In AES as the key size is increased by 64

bits, the energy consumption increased about 8%

without any data transfer. In a study to evaluate

performance of encryption algorithms on power

consumption for wireless devices, Figure 1 graph is

derived which shows the power consumption for

encrypting text data with different data block size by

calculating change in battery left for encryption

process without data transmission [3].

Figure 1: Battery consumed for each encryption algorithm

As seen in Figure 1, most of encryption

algorithms consumes energy which affect battery

power. Due to the slow increasing rate in battery

technology than other technologies we face a

‘‘battery gap" [4], so decisions need to be made

about energy consumption and security to reduce the

consumption of battery powered devices.

Figure 2: Throughput of each encryption algorithm
(Megabyte/Sec)

The throughput of the encryption scheme is

calculated by dividing the total size of plaintext in

megabytes encrypted on the total encryption time for

each algorithm in. As the throughput value is

increased, the power consumption and CPU process

time of this encryption technique is decreased. CPU

Process Time reflects the load of the CPU. This load

depends on the CPU time used in the encryption

process. Therefore, the more time the CPU will be

used in the encryption process, the higher the load of

the CPU will be. In Figure 2, it is evident that other

than Blowfish algorithm, all other algorithms’

throughput is very low and cannot be recommended

for low computing systems.

The study in [5] shows that the consumption time

of encryption algorithms is increased as the key size

and the packet size increased and AES has better

performance than RC2, DES, and 3DES. On the

other hand, [6] and [7] found that AES requires more

space in memory as the baseline version of AES uses

800 bytes memory space for lookup tables and

consumes the most energy per byte during

encryption and decryption.

B. The Internet of Things (IoT)
The Internet of Things (IoT) is now one of the

essential topics in the industry of technology. IoT

has changed our world in the recent years in many

aspects of life, including industrial components,

customer goods, cars, smart phones, TVs, and many

of our daily use objects (‘‘things’’) that have unique

identities and are being provided with internet

connection in which case can be remotely available.

IoT enables highly resource-constrained devices

which have lower computational power, smaller

memory size, lower power consumption, smaller

physical size, lower price to communicate, compute

3

process and make decision in the communication

network [8]. Security is one of the challenging issues

in IOT due to the limited resources available in such

constrained devices, in other words how to provide

confidentiality, data integrity, and authentication to

IOT devices, in spite of the fact that most security

mechanisms require heavy computation loads and

large memory requirements.

As we discussed in part a) the commonly used

cryptographic algorithms consume a significant

amount of computing resources such as CPU time,

memory, and battery power, so the main challenge

in IOT as resource constraint devices is a resource-

efficient cryptographic algorithms which are

lightweight algorithms that are suitable for resource-

constrained environments. These include algorithms

that are fast and responsive, more energy and storage

efficient than conventional encryption and

decryption algorithms, and powered by optimized

crypto engines [9].

LIGHT WEIGHT CRYPTOGRAPHY ALGORITHMS
Design criteria of cryptographic algorithms to be

used in extremely low resource devices are different
from that of the commonly used ones. For this,
lightweight cryptography algorithms are developed
that have extremely low requirements. Even though
no strict criteria is defined for lightweight
cryptography algorithms, the features usually
includes any one or more of

• Minimum size required for hardware
implementation;

• Low computational power of
microprocessors or microcontrollers;

• Low implementation cost;

• Good security

There is a trade-off between security, costs and

performance i.e. in cryptographic algorithms, the

key length is correlated with security and cost trade-

off, while the number of rounds in encryption

provides a security, performance trade-off and

hardware architecture[10]. As it is difficult to

optimize all the three design goals, usually two of

these goals are kept in mind while designing the

lightweight algorithms.

A. DESL & DESXL
DESL is the lightweight version of classical DES

algorithm and DESXL is a lightweight version of the
DESX algorithm where both uses a single S-box
(substation block) instead of 8 S-boxes. As there is
only a single S-box, memory is saved and the S-box
makes them resistant to most of the common
cryptanalytic attacks.

B. Curupira
Curupira algorithm is based on the Wide Trail

strategy by Joan Daemen [11]. To qualify it as the
lightweight algorithm, it has the following features:

• The data block size is 96 bits and is
represented as 3 X 4-byte array. The key
lengths can be 96, 144 or 192 bits;

• The number of rounds is determined based
on the key length;

• The 8 X 8-bit S-box is implemented as
two 4 X 4-bit S-boxes. This will reduce
the space required to store the S-boxes

C. Katan & Ktantan
KATAN & KTANTAN are from a family of

hardware oriented six block ciphers which are
divided into 3 KATAN ciphers: KATAN32,
KATAN48, and KATAN64 and 3 KTANTAN
ciphers: KTANTAN32, KTANTAN48 and
KTANTAN64. The number in the algorithm’s name
represents the block size of the algorithm in bits.
They both use 80-bit key size. The difference is that
KTANTAN is more compact in hardware where the
key is burnt into the target device and cannot be
changed. So KTANTAN ciphers are small block
ciphers when compared to KATAN and is used in
devices which are initialized with one key.

Due to the following features, the resource
requirements for Katan & Ktantan algorithm are
low:

• The size of the internal state is equivalent
to the block size of the algorithm. They use
the shift registers and feedback functions
which are easy to implement in hardware
and provides required nonlinearity.

• They process small blocks of data which
are from 32 to 64 bits;

• KTANTAN’s key schedule is simple.

D. Present
PRESENT is one of the leanest lightweight

algorithms and has obtained the ISO/IEC standard
for lightweight cryptography. It is based on the
transformation layers of Serpent [13] and DES [12]
that has been analyzed in-depth, especially on
security and hardware efficiency. It has the
following features to consider it as the leanest
algorithm.

• It uses very less gate count and less
memory.

• It performs 31 rounds on 64-bit data block
• It allows to use 80 or 128-bit keys.
• The most compact hardware

implementation of PRESENT needs 1570
(GE) and is therefore competitive with
today's leading compact stream ciphers,
which need 1300-2600 GE.

4

PRESENT was designed for hardware
performance but can be implemented in software.
The applications that mainly uses PRESENT
algorithm is for encrypting small or reasonable
amount of data.

E. Hummingbird
Hummingbird is a hybrid algorithm of both block

and stream ciphers. It encrypts
• 16-bit blocks of data

• Uses a 256-bit key

• Has 80-bit internal state and
• Simple logic and arithmetic operations.

Because it uses a small block size, it has minimum

response time and power consumption requirements
and is suitable for RFID tags or wireless sensors
without any modification of the current standard.

Even though Hummingbird performs operations
on short 16-bit block size, when compared to
PRESENT, it has higher latency and execution time.
So it has less encryption speed and is less efficient
for authentication mechanisms.

Later Hummingbird-2 was designed which can
optionally produce an authentication tag for each
message. In comparison to its predecessor,

• It operates on 16-bit blocks

• The key size is 128 bit and

• Its internal state r, with size 128 bit, is

initialized using 64 bit initialization vector
iv.

To authenticate any associated data that travels

with cipher text, Hummingbird-2 uses a method
called Authenticated Encryption with Associated
Data. Processing of associated data happens only
after the processing of entire encrypted payload. For
messages with size less than 16 bits it’s better to
communicate without message expansion.
Advantage of Hummingbird-2 is its low power
consumption and processing speed is faster.

F. Simon and Speck
Simon and Speck is a family of lightweight block

ciphers developed by the National Security Agency
(NSA) and released in June 2013. Simon and Speck
algorithm aims to be generalist block cipher so that
it can be recommended for future applications of IoT
[14].

Even though Simon is optimized for hardware
implementations and Speck is optimized for
software implementations both have advantages
such as:

• Offers excellent performance on hardware

and software platforms

• Very simple constructed and so it is very
easy to find efficient implementations.

• Flexible enough to construct a variety of

implementations on a given platform, and

• Open to analysis using existing techniques.

Both Simon and Speck come with ten distinct

block ciphers with differing block and key sizes.
Simon is denoted as Simon2n, for 2n-bit block and
n is required to be 16, 24, 32, 48, or 64. Simon2n
with an m-word (mn-bit) key will be referred to as
Simon2n/mn. For example, Simon64/128 refers to
the version of Simon acting on 64-bit plaintext
blocks and using a 128-bit key. The analogous
notation is used for Speck. The range of block and
key sizes goes from tiny to large: a 32bit block with
a 64-bit key at the low end, to a 128-bit block with a
256-bit key at the high end.

G. LED
Light Encryption Device is a symmetric block

cipher that is lightweight and can be implemented in
hardware efficiently. A use case of LED is the secure
storage and transmission of RFID tags. LED uses a
block size of 64 bits.

The key length is 64 bit (LED-64) or 128 bit
(LED-128). Even key length between 64 bit and 128
bit is possible in which case the remaining bits will
be padded with the prefix of the key.

LED can be used for software implementation.

H. TEA
The Tiny Encryption Algorithm (TEA) was

developed with the objective to be used on low-
performing small computers. This block cipher is
based on a high performance but mathematically
simple encryption algorithm which are variants of a
Feistel Cipher.

• TEA encrypts 64 bit blocks which are
divided into 32 bit blocks.

• Uses a 128-bit length key.
• TEA is a round based encryption

method. The number of the used rounds
are variable but 32 Tea cycles are
recommended.

• It is developed based on the assumption
that security can be enhanced by
increasing the number of iterations.

Even though TEA has 32 rounds, it is faster than
DES with 16 rounds and all modes of DES are
applicable with it. It can be implemented in all
programming languages.

The XTEA (eXtended TEA) algorithm is a further
development of TEA. It works with:

• 64 Bit blocks and
• 128 Bit key length
• 64 encryption rounds.

5

When compared to TEA, XTEA has a more
complex key management and a change of the Shift,
XOR and addition operations.

Along with XTEA, Block TEA was also released
which differs only on the part that it doesn’t require
a fixed block size but can work with blocks of any
size. Block TEA does not need an operation mode to
ensure confidentiality and authenticity; and can be
applied directly to the entire message

I. SEA
SEA (Scalable Encryption Algorithm) has fthe

ollowing features
• Low memory,
• Small code size,
• Limited instruction set. And
• Flexibility to run on any platform as it

can be parameterized according to
processor size as well as plaintext size
and key size

SEA, which is based on Feistel structure, is the
most compact cipher due to use of 3-bit S-box. SEA
is recommended for small encryption routines.

J. TWINE
TWINE, proposed by Tomoyasu [15, 16], is based

on a Generalized Feistel Structure (GFS), which
enables small implementations on hardware and
software. It can be implemented in hardware with
1.5 KGates and low-end micro-controllers (due to its
small memory consumption) but requires several
iterations to make the resulting cipher sufficiently
secure. To recover this drawback, TWINE employs
an improved variant of GFS which results in making
it to be ultra-lightweight while keeping sufficient
speed.

TWINE is Type-2 generalized Feistel [20] with
following features:

• 64 bits block size
• 36 rounds
• TWINE has two types - TWINE-80 and

TWINE-128 where the key size is 80 bits
and 128 bits respectively.

K. Other Algorithms
Other notable algorithms are listed below:

• Skipjack [17] is a lightweight block
cipher based on an unbalanced Feistel
network designed by U.S. NSA for
embedded applications. It operates on
64-bit block length with 80-bit key.

• NOEKEON is a hardware-efficient
block cipher by Daemen et al. [18].

• HIGHT was designed by Hong et al. [19]
which a generalized Feistel-like cipher
as it possesses 64-bit block length and
128- bit key length to be suitable for low-
cost, low-power, and ultralight

implementation and it undergoes 32-
round iterative structure.

• By redesigning Crypton by compact
implementation of both hardware and
software, mCrypton is created.

• KeeLoq is a lightweight block cipher

with a 32-bit block size and a 64-bit key

proposed by Bogdanov in 2007. Despite

its short key size, it is widely used in

remote key less entry systems and other

wireless authentication applications.

It has been noticed that block ciphers such as
DESL, HIGHT, PRESENT are more suitable for
resource constrained environments when compared
to stream ciphers. KATAN, LED, SIMON; and
PRESENT has been optimized for performance on
hardware devices and SPECK, SEA and TEA for
performance in software.

 ATTACKS ON LIGHTWEIGHT CIPHERS

Cryptanalysis uses the weaknesses in
cryptographic algorithms to breach their security
and access the content of any cipher text. As
discussed above, the main challenge in light weight
algorithms is how to balance between low resources
requirements in constrained devices, performance,
and security. As a result, the risk content is more in
light weight ciphers that need to be identified and
analyzed before deployment and requires a lot of
cryptanalysis work. In this section we survey the
dedicated attacks on some light weight crypto
algorithms:

A. DESL
 DESL is more secure against certain types of

linear and di�erential cryptanalyses (attack based
on how well differences in the input propagate to
output differences) and the Davies-Murphy attack
(dedicated statistical cryptanalysis method for
attacking the Data Encryption Standard (DES))
because it uses a single S-box repeated eight times
to minimize the probability of collisions at the
output of the S-boxes and thus at the output of the f-
function. But there is possibility to have a collision
in three adjacent S-boxes leads to successful
differential attack based on a 2-round iterative
characteristic with probability 1/234 [21].

B. KATAN and KTANTAN
The KATAN and the KTANTAN families are

secure against di�erential and linear attacks (linear
cryptanalysis is based on how well the algorithm
transformation can be approximated by a linear
mapping) but they are possible to be attacked by
Slide Attacks (based on finding two messages such

6

that they share most of the encryption process given
the fact that there is a difference between the
deployed round functions) which is possible only for
a very small number of rounds [22].

KTANTAN families are susceptible to Cube
Attacks and Algebraic Attacks (Algebraic
cryptanalysis solves linear and nonlinear equations

on input, output and key variables using algebraic

representations of the algorithm transformation

[10]) by low algebraic degree of the combining

function after 160 rounds.

C. PRESENT
In PRESENT, linear attacks were more successful

in breaking more rounds than di�erential attacks
[24] due to the following facts:

• Bitwise permutation of PRESENT
• The design criteria of the PRESENT s-

box allows the existence of linear
characteristics with one active s-box per
round and prevents the existence of
di�erential characteristics with one
active s-box per round

• The existence of eight linear
approximations in the PRESENT Sbox
with input and output mask Hamming
weight one

As it exhibits a particular weakness in its
di�usion layer, the PRESENT cipher is targeted by
statistical saturation attack proposed by Bogdanov et
al. at CHES 2007 [25]. Also related-key attacks and
slide attacks are two of the most effective attacks on
PRESENT cipher [10].

D. TEA & HUMMINGBIRD
The simplicity of TEA key schedule (key size is

only 126 bits) make it exposed to several attacks like
equivalent keys attack which exploits the weakness
that each key is equivalent to three others. TEA is
also can be attacked by related-key and slide attacks.
But these weakness points are modified in a new
version called XTEA algorithm [10, 26].

 Hummingbird cipher has a hybrid mode of block
cipher and stream cipher and researchers in [27]
analyze that it is resistant to the most common
attacks to block ciphers and stream ciphers including
birthday attack, di�erential and linear cryptanalysis.
But other studies [10] proposed that there is a high
probability that this cipher can be admitted to cube
attack if the degree of the internal state transition
function in a stream cipher is low.

E. HIGHT (high security and light weight)
HIGHT is exposed to saturation attack in which

saturated multi-set of plaintexts is used, as the
saturation characteristic (property of XOR sum
should be known that XOR sum of particular parts

of the corresponding cipher texts is zero) are found
in block ciphers which applies on 16-round of
HIGHT [10,28]. The Boomerang attack is another
attack applicable on HIGHT [10].

As a conclusion for this section, attacks on
lightweight ciphers is an important area that requires
more focus as the era of IoT is strongly depended on
security.

PERFORMANCE ANALYSIS OF LIGHT WEIGHT
CIPHERS ON AN EMBEDDED PLATFORM

In case of large electrical or mechanical systems,
there can be one or more computer systems, each
taking care of a specific function. When these
computers are embedded as part of a complete
device, they are called embedded systems.
Embedded systems are used in home automation to
control lights, sensors, AV systems and also in GPS,
ATMs, networking equipment, digital video
cameras, mobile phones, aerospace applications,
telecom applications, etc. Currently embedded
system market is aiming to make certain
transformations into their products to take advantage
of IoT world. But the future of embedded systems
and IoT lies in the advancement of technologies that
enable faster communication with high interwoven
connections between different devices.

The Raspberry Pi is an embedded Linux system
consisting of a small single-board computer. The
Raspberry Pi has built in booting and kernel building
modules, and is especially well suited for teaching
applications programming.

In this section we present the performance
analysis of light weight ciphers on an Intel based
laptop and on Raspberry Pi system. The
cryptographic algorithms for which the performance
analysis was conducted were TEA (32-bit), DESL,
HIGHT2, KEELOQ, LBLOCK, PES and
SKIPJACK. Tables 1 and 2 show the execution time
and time per block for these light weight
cryptographic algorithms. For each algorithm,
10,000,000 iterations were conduction to find the
execution time on Intel based platform as well as
Raspberry PI based platform except for DESL where
only 1000 iterations were conducted.

TABLE 1: PERFORMANCE OF LIGHT WEIGHT ALGORITHMS ON

WINDOWS PLATFORM

Cipher Name
Execution
Time (sec)

Time per

Block
Blocks per

second

tea_32 0.112 1.12E-07 8.93E+06

Desl 0.003 3.00E-06 3.33E+05

hight2 0.686 6.86E-07 1.46E+06

Keeloq 2.3564 2.36E-06 4.24E+05

Lblock 1.112 1.11E-06 8.99E+05

7

Pes 0.646 6.46E-07 1.55E+06

Skipjack
(encryption) 0.114 1.14E-07 8.77E+06

Skipjack
(decryption) 0.126

TABLE 2: PERFORMANCE OF LIGHT WEIGHT ALGORITHMS ON

RASPBERRY PI PLATFORM

Cipher Name
Execution
Time (Sec)

Time per

Block
Blocks per

second

tea_32 1.399904 1.40E-06 7.14E+05

Desl 0.20139 2.01E-04 4.97E+03

hight2 24.79685 2.48E-05 4.03E+04

Keeloq 27.52748 2.75E-05 3.63E+04

Lblock 10.46632 1.05E-05 9.55E+04

pes 5.09033 5.09E-06 1.96E+05

Skipjack
(encryption) 1.58902 1.59E-06 6.29E+05

Skipjack
(decryption) 1.64537

The below figure 3 shows the graph derived from

the above two tables indicating the execution time
with respect to the light weight ciphers being
analyzed. It can be noticed that execution time on the
embedded Raspberry Pi is lot higher when compared
to the Windows execution time. Even though keeloq
and hight2 execution time is high it should be
noticed that the number of iterations were 1,000,000
whereas the execution time of DESL was recorded
just for 1000 iterations. So it is safe to assume DESL
execution time is higher than the rest of these
algorithms.

Figure 3: Execution time of Algorithms on Windows and
Raspberry Pi

Time per block is calculated as execution time
divided by number of iterations. When comparing
the time per block of these algorithms, the chart in
Figure 4 shows DESL on raspberry pi platform

shoots up. But in case of Windows platform,
DESL’s time is somewhat within the range of other
algorithms.

Figure 4: Time taken per block execution of Algorithms on
Windows and Raspberry Pi

The reverse of time per block gives you the value
of blocks executed per second. The Figure 5 graph
clearly shows that the Windows platform output
outperforms the embedded platform for these
algorithms.

Figure 5: Algorithms’ block per second comparison on Windows
and Raspberry Pi platform

TABLE 3: COMPARISON OF EXECUTION OF ALGORITHMS ON

WINDOWS AND RASPBERRY PI PLATFORM

Cipher
Name

Blocks per
second CPU -
Windows-x64

Blocks per
second
600MHz

Raspberry Pi-3

Comparison
Factor

tea_32 8.93E+06 7.14E+05 0.08

0
5

10
15
20
25
30

Chart Title

Execution Time (sec)
2GHz P5 CPU - Windows-x64

Executon Time (Sec)
armv7l - 600MHz
Raspberry Pi-3

0.00E+00

5.00E-05

1.00E-04

1.50E-04

2.00E-04

2.50E-04

Chart Title

Time per Block CPU - Windows-x64

Time per Block 600MHz
Raspberry Pi-3

0.00E+00

2.00E+06

4.00E+06

6.00E+06

8.00E+06

1.00E+07

Chart Title

Blocks per second CPU - Windows-x64

8

desl 3.33E+05 4.97E+03 0.01

hight2 1.46E+06 4.03E+04 0.03

keeloq 4.24E+05 3.63E+04 0.09

lblock 8.99E+05 9.55E+04 0.11

pes 1.55E+06 1.96E+05 0.13

skipjack 8.77E+06 6.29E+05 0.07

Finally, the Table 3 shows the comparison table

for the light weight cryptographic algorithms on
windows and embedded platform.

These charts and tables indicate that the light
weight ciphers have better performance in Windows
platform when compared to embedded platform. So
there is a need of further more research in the area
of light weight ciphers in embedded platform as we
are looking to a future where IoT and Embedded
systems can go hand-in-hand.

REFERENCES
[1] W. Stallings, Cryptography and Network Security, Prentice

Hall, pp. 58-309, 4th Ed, 2005.
[2] Paar, Christof, Pelzl, Jan; Understanding Cryptography, A

Textbook for Students and Practitioners; First Edition,
2010. ISBN 978-3-642-04100-6 e-ISBN 978-3-642-04101-
3 DOI 10.1007/978-3-642-04101-3.

[3] Studying the Effects of Most Common Encryption
Algorithms, Diaa Salama, Hatem Abdual Kader, and
Mohiy Hadhoud Jazan University, Kingdom of Saudi
Arabia Minufiya University, Egypt, International Arab
Journal of e-Technology, Vol. 2, No. 1, January 2011.

[4] Evaluating the Performance of Symmetric Encryption
Algorithms, Diaa Salama Abd Elminaam1, Hatem
Mohamed Abdual Kader2, and Mohiy Mohamed
Hadhoud2, International Journal of Network Security,
Vol.10, No.3, PP.213 {219, May 2010.

[5] Idrus.S.Z, Aljunid.S.A, Asi.S.M (2008), ''Performance
Analysis of Encryption Algorithms Text Length Size on
WebBrowsers,'' IJCSNS International Journal of Computer
Science and Network Security, VOL.8 No.1, PP 20-25.

[6] C. T. R. Hager, S. F. Midkiff, J. M. Park, and T.L. Martin,
“Performance and energy efficiency of block ciphers in
personal digital assistants,” Third IEEE International
Conference on Pervasive Computing and Communications,
pp. 127-136, Mar. 8-12, 2005.

[7] Analytical Comparison of Cryptographic Techniques for
Resource-Constrained Wireless Security, M. Razvi
Doomun and KMS Soyjaudah, International Journal of
Network Security, Vol.9, No.1, PP.82–94, July 2009.

[8] Enterprise IoT: Strategies and Best Practices for Connected
Products and ... By Dirk Slama, Frank Puhlmann, Jim
Morrish, Rishi M Bhatnagar first edition

[9] Lightweight Cryptography: Underlying Principles and
Approaches International Journal of Computer Theory and
Engineering, Vol. 3, No. 4, August 2011.

[10] Anjali Arora, Priyanka, Saibal Kumar Pal, “A Survey of
Cryptanalytic Attacks on Lightweight Block Ciphers,”
IRACST - International Journal of Computer Science and
Information Technology & Security (IJCSITS), ISSN:
2249-9555 Vol. 2, No.2, April 2012

[11] J. Daemen. Cipher and hash function design strategies based
on linear and differential cryptanalysis. Doctoral
Dissertation, March 1995, K. U. Leuven.

[12] FIPS Publication 46-3. Data Encryption Standard (DES). U.
S. Department of Commerce / National Institute of
Standards and Technology. Reaffirmed 1999 October 25.

[13] R. J. Anderson, E. Biham, and L. R. Knudsen. Serpent: A
Proposal for the Advanced Encryption Standard. Available
at http://www.cl.cam.ac.uk.

[14] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan
Treatman-Clark, Bryan Weeks, and Louis Wingers. Simon
and speck: Block ciphers for the internet of things.
Cryptology ePrint Archive, Report 2015/585, 2015.
http://eprint.iacr.org/.

[15] Tomoyasu Suzaki, Kazuhiko Minematsu, Sumio Morioka,
and Eita Kobayashi, “TWINE: A Lightweight, Versatile
Block Cipher”.

[16] Tomoyasu Suzaki, Kazuhiko Minematsu, Sumio Morioka,
and Eita Kobayashi. TWINE: A lightweight block cipher for
multiple platforms. In LarsR. Knudsen and HuapengWu,
editors, Selected Areas in Cryptography, volume 7707 of
Lecture Notes in Computer Science, pages 339–354.
Springer Berlin Heidelberg, 2013.

[17] National Institute of Standards and Technology. Skipjack
and kea algorithm specifications (version 2.0). NIST online
document. Available
http://csrc.nist.gov/groups/ST/toolkit/documents/skipjack/s
kipjack.pdf, May 1998.

[18] J. Daemen, M. Peeters, G. Van Assche, and V. Rijmen. The
Noekeon block cipher. The NESSIE Proposal, 2000.

[19] D. Hong, J. Sung, S. Hong, J. Lim, S. Lee, B. Koo, C. Lee,
D. Chang, J.Lee, K. Jeong, H. Kim, J. Kim, and S. Chee.
HIGHT: A new block cipher suitable for low-resource
device. In L. Goubin and M. Matsui, editors, Cryptographic
Hardware and Embedded Systems – CHES 2006, volume
LNCS 4249, pages 46–59. Springer, 2006.

[20] Yuliang Zheng, Tsutomu Matsumoto, and Hideki Imai. On
the construction of block ciphers provably secure and not
relying on any unproved hypotheses. In Gilles Brassard,
editor, Advances in Cryptology CRYPTO 89 Proceedings,
volume 435 of Lecture Notes in Computer Science, pages
461–480. Springer New York, 1990.

[21] Gregor Leander, Christof Paar, Axel Poschmann, and Kai
Schramm, “New Lightweight DES Variants”, RFIDSec ’06,
2006.

[22] Christophe De Canni`ere and Orr Dunkelman, Miroslav
Kne zevi´c, “KATAN & KTANTAN — A Family of Small
and Efficient Hardware-Oriented Block Ciphers”.

[23] A. Bogdanov, L.R. Knudsen, “PRESENT: An Ultra-
Lightweight Block Cipher”

[24] Mohamed Ahmed A. M. A. Abdelraheem, “Cryptanalysis
of Some Lightweight Symmetric Ciphers”, Department of
Mathematics in The Technical University of Denmark,
December 2012.

[25] B. Collard and F.-X. Standaert, “A Statistical Saturation
Attack against the Block Cipher PRESENT”

[26] B. Collard and F.-X. Standaert, David J.Wheeler, Roger
Needham, “A Tiny Encryption Algorithm”.

[27] Daniel Engels, Xinxin Fan, Guang Gong, Honggang Hu,
and Eric M. Smith, “Hummingbird: Ultra-Lightweight
Cryptography for Resource-Constrained Devices.”

[28] Peng Zhang1, Bing Sun1, and Chao Li1, “Saturation Attack
on the Block Cipher HIGHT”, Department of Mathematics
and System Science, Science College of National,
University of Defense Technology, Changsha, 410073,
China.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

