Linked List

Spring 2019 Intermediate Programming

Introduction

* Alinked list is a data structure which can change
during execution.
— Successive elements are connected by pointers.
— Last element points to NULL.

— It can grow or shrink in size during execution of a
program.

—" It can be made just as long as required.
?— It does not waste memory space.
\
Al—1Bld—1 ¢ [+—

Spring 2019 Intermediate Programming 2

* Keeping track of a linked list:

— Must know the pointer to the first element of the
list (called start, head, etc.).

* Linked lists provide flexibility in allowing the
items to be rearranged efficiently.
— Insert an element.
— Delete an element.

Spring 2019 Intermediate Programming

[llustration: Insertion
R oy e B
tmp —{ X[homios®

LAy B [o+—1 € [4+—

Spring 2019 Intermediate Programming 4

Spring 2019

Pseudo-code for insertion

typedef struct nd {
struct item data;
struct nd * next;
} node;

void insert(node *curr)

{

node * tmp;

tmp=(node *) malloc(sizeof(node));
tmp->next=curr->next;
curr->next=tmp;

}

Intermediate Programming

[llustration: Deletion

Item to be deleted

Ry ey o

tmp

34T4c4—i

curr

Spring 2019 Intermediate Programming 6

Spring 2019

Pseudo-code for deletion

typedef struct nd {
struct item data;
struct nd * next;
} node;

void delete(node *curr)
{

node * tmp;
tmp=curr->next;
curr->next=tmp->next;
free(tmp);

}

Intermediate Programming

In essence ...

* Forinsertion:
— Arecord is created holding the new item.

— The next pointer of the new record is set to link it to
the item which is to follow it in the list.

— The next pointer of the item which is to precede it
must be modified to point to the new item.

* For deletion:

— The next pointer of the item immediately preceding
the one to be deleted is altered, and made to point
to the item following the deleted item.

Spring 2019 Intermediate Programming 8

Array versus Linked Lists

¢ Arrays are suitable for:
— Inserting/deleting an element at the end.
— Randomly accessing any element.
— Searching the list for a particular value.
* Linked lists are suitable for:
— Inserting an element.
— Deleting an element.
— Applications where sequential access is required.

— In situations where the number of elements cannot
be predicted beforehand.

Spring 2019 Intermediate Programming 9

Types of Lists
* Depending on the way in which the links are

used to maintain adjacency, several different
types of linked lists are possible.

Linear singly-linked list (or simply linear list)
TS |

* One we have discussed so far.
Al—rfB |4—fc4—

Spring 2019 Intermediate Programming 10

— Circular linked list

* The pointer from the last element in the list points back
to the first element.

Choa>
e B a—e—

Spring 2019 Intermediate Programming 1

— Doubly linked list

* Pointers exist between adjacent nodes in both
directions.

* The list can be traversed either forward or backward.

Usually two pointers are maintained to keep tra
Qhe list, head and tail.

Spring 2019 Intermediate Programming 12

Basic Operations on a List

* Creating a list

* Traversing the list

* Inserting an item in the list

* Deleting an item from the list

* Concatenating two lists into one

List is an Abstract Data Type

* What s an abstract data type?
— It is a data type defined by the user.
— Typically more complex than simple data types like
int, float, etc.
* Why abstract?
— Because details of the implementation are hidden.

— When you do some operation on the list, say insert
an element, you just call a function.

— Details of how the list is implemented or how the
insert function is written is no longer required.

Spring 2019 Intermediate Programming 14

Conceptual Idea
Insert |:>
List
implementation
Delete ———> pand the
related functions
Traverse C——— >

~_

Spring 2019 Intermediate Programming

Example: Working with linked list

¢ Consider the structure of a node as follows:

struct stud {
int roll;
char name[25];
int age;
struct stud *next;

bi
/* A user-defined data type called “node” */

typedef struct stud node;
node *head;

Spring 2019 Intermediate Programming 16

Creating a List

Spring 2019 Intermediate Programming 17

How to begin?

* To start with, we have to create a node (the
first node), and make head point to it.

head = (node *)
malloc (sizeof (node)) ;
head

roll

v

name next

age

Spring 2019 Intermediate Programming

Contd.

* If there are n number of nodes in the initial
linked list:
— Allocate n records, one by one.
— Read in the fields of the records.
— Modify the links of the records so that the chain is

rmed.
A e [[+—

Spring 2019 Intermediate Programming 19

node *create_list()
{

int k, n;

node *p, *head;

printf ("\n How many elements to enter?");
scanf ("%d", &n);

for (k=0; k<n; k++)
{

if (k == 0) |
head = (node *) malloc(sizeof (node));
p = head;
}
else {
p->next = (node *) malloc(sizeof (node));
P = p->next

scanf ("%d %s %d", &p->roll, p->name, &p->age);
}

p->next = NULL;
return (head);

}

Spring 2019 Intermediate Programming

20

* To be called frommain () function as:

node *head;

head = create list();

Spring 2019 Intermediate Programming

Traversing the List

Spring 2019 Intermediate Programming

What is to be done?

* Once the linked list has been constructed and
head points to the first node of the list,
— Follow the pointers.

— Display the contents of the nodes as they are
traversed.

— Stop when the next pointer points to NULL.

Spring 2019 Intermediate Programming

void display (node *head)
{

int count = 1;

node *p;

p = head;
while (p != NULL)
{

printf ("\nNode %d: %d $s %d", count,

count++;

p = p->next;
}
printf ("\n");

p->roll, p->name, p->age);

Spring 2019 Intermediate Programming

* To be called frommain () function as:

node *head;

display (head);

Spring 2019 Intermediate Programming

Spring

Inserting a Node in a List

2019 Intermediate Programming

How to do?

* The problem is to insert a node before a
specified node.

— Specified means some value is given for the node
(called key).

— In this example, we consider it to be rol1.

¢ Convention followed:

— If the value of roll is given as negative, the node
will be inserted at the end of the list.

Spring 2019 Intermediate Programming

Spring

Contd.

When a node is added at the beginning,
— Only one next pointer needs to be modified.
* head is made to point to the new node.

* New node points to the previously first element.

When a node is added at the end,

— Two next pointers need to be modified.
* Last node now points to the new node.
* New node points to NULL.

When a node is added in the middle,

— Two next pointers need to be modified.
* Previous node now points to the new node.
* New node points to the next node.

2019 Intermediate Programming

void insert (node **head)
{
int k = 0, rno;
node *p, *q, *new;

new = (node *) malloc(sizeof (node)) ;

printf ("\nData to be inserted: ");

scanf ("%d %s %d", &new->roll, new->name, &new->age) ;
printf ("\nInsert before roll (-ve for end):");

scanf ("%d", &rno);

P = *head;
if (p->roll == rno) /* At the beginning */
{

new->next = p;
*head = new;

Spring 2019 Intermediate Programming 29

else
{
while ((p '= NULL) && (p->roll !'= rno))
{
q=p;
P = p->next;
! The pointers
if (p == NULL) /* At the end */ [[gandp
{ always point
q->next = new; to consecutive
new->next = NULL; nodes.
}
else if (p->roll == rno)
/* In the middle */
{
g->next = new;
new->next = p;
}
}
Spring 2019 Intermediate Programming 30

* To be called frommain () function as:

node *head;

insert (&head);

Spring 2019 Intermediate Programming 31

Deleting a node from the list

Spring 2019 Intermediate Programming 32

What is to be done?

* Here also we are required to delete a specified
node.

— Say, the node whose rol1 field is given.
* Here also three conditions arise:

— Deleting the first node.

— Deleting the last node.

— Deleting an intermediate node.

Spring 2019 Intermediate Programming 33

void delete (node **head)
{

int rno;

node *p, *q;

printf ("\nDelete for roll :");
scanf ("%d", &rno);

P = *head;
if (p->roll == rno)
/* Delete the first element */
{
*head = p->next;
free (p);

Spring 2019 Intermediate Programming 34

else
{
while ((p '= NULL) && (p->roll !'= rno))
{
q =P/
P = p->next;
}
if (p == NULL) /* Element not found */
printf ("\nNo match :: deletion failed");
else if (p->roll == rno)
/* Delete any other element */
{
g->next = p->next;
free (p):;

Spring 2019 Intermediate Programming 35

Few Exercises to Try Out

* Write a function to:
— Concatenate two given list into one big list.
node *concatenate (node *head1l, node *head?2);
— Insert an element in a linked list in sorted order.

The function will be called for every element to
be inserted.

void insert_sorted (node **head, node *element);

— Always insert elements at one end, and delete
elements from the other end (first-in first-out
QUEUE).

void insert_q (node **head, node *element)
node *delete_q (node **head) /* Return the deleted node */

Spring 2019 Intermediate Programming 36

A First-in First-out (FIFO) List

ses()_ Dee

Also called a QUEUE

Spring 2019 Intermediate Programmin

A Last-in First-out (LIFO) List

In Out
©OO »© O
C B A B C
Also called a
STACK

Abstract Data Types

Spring 2019 Intermediate Programming

Example 1 :: Complex numbers

struct cplx {

goat re; Structure

oa im; . s

) definition
typedef struct cplx complex;

complex *add (complex a, complex b);

complex *sub (complex a, complex b);

complex *mul (complex a, complex b); Function
complex *div (complex a, complex b); prototypes
complex *read();

void print (complex a);

pring 2019 Intermediate Programming 40

add

sub

mul Complex

Number

div —

read

print

Spring 2019 Intermediate Programming

Example 2 :: Set manipulation

struct node {

int element; Structure
struct node *next; definition
}
typedef struct node set;

set *union (set a, set b);

set *intersect (set a, set b); i
set *minus (set a, set b); Function
void insert (set a, int x); prototypes
void delete (set a, int x);

int size (set a);

Spring 2019 Intermediate Programming 42

union

intersect

minus

insert —

delete

size

Spring 2019 Intermediate Programming

Example 3 :: Last-In-First-Out STACK

Assume:: stack contains integer elements

void push (stack *s, int element);
/* Insert an element in the stack */
int pop (stack *s);
/* Remove and return the top element */
void create (stack *s);
/* Create a new stack */
int isempty (stack *s);
/* Check if stack is empty */
int isfull (stack *s);
/* Check if stack is full */

Spring 2019 Intermediate Programming 44

11

push

pop
create

isempty ——

isfull

Spring 2019 Intermediate Programming

Contd.

* We shall look into two different ways of
implementing stack:

— Using arrays
— Using linked list

Spring 2019 Intermediate Programming

46

Example 4 :: First-In-First-Out
QUEUE

Assume:: queue contains integer elements

void enqueue (queue *g, int element);
/* Insert an element in the queue */
int dequeue (queue *q);
/* Remove an element from the queue */
queue *create();
/* Create a new queue */
int isempty (queue *q);
/* Check if queue is empty */
int size (queue *q);

/* Return the no. of elements in queue */

Spring 2019 Intermediate Programming

dequeue
create

isempty ——

size

Spring 2019 Intermediate Programming

12

Stack Implementations: Using Array
and Linked List

STACK USING ARRAY

PUSH

Spring 2019 Intermediate Programming 50

Spring 2019 Intermediate Programmin, 49
STACK USING ARRAY
POP
Spring 2019 Intermediate Programming 51

Stack: Linked List Structure

PUSH OPERATION

Spring 2019 Intermediate Programming

13

Stack: Linked List Structure

POP OPERATION
Spring 2019 Intermediate Programming 53

Basic Idea

¢ We would:

— Declare an array of fixed size (which determines

the maximum size of the stack).

— Keep a variable which always points to the “top”

of the stack.

* Contains the array index of the “top” element.

Spring 2019

Intermediate Programming

54

Basic Idea

* In the array implementation, we would:

— Declare an array of fixed size (which determines the maximum size of
the stack).

— Keep a variable which always points to the “top” of the stack.
* Contains the array index of the “top” element.

* In the linked list implementation, we would:
— Maintain the stack as a linked list.

— A pointer variable T O points to the start of the list.

— The first element of the linked list is considered as the stack top.

Spring 2019 Intermediate Programming 55

Declaration

#define MAXSIZE 100

struct lifo

{
int st[MAXSIZE];
int top;

}i

typedef struct lifo

stack;

stack s;

ARRAY

Spring 2019

struct lifo
{
int value;
struct lifo *next;
}i
typedef struct lifo
stack;

stack *top;

LINKED LIST

Intermediate Programming

14

Stack Creation

void create (stack *s)
{
s->top = -1;

/* s->top points to
last element

void create (stack **top)
{
*top = NULL;

/* top points to NULL,
indicating empty

Pushing an element into the stack

Spring 2019

void push (stack *s, int element)
{
if (s->top == (MAXSIZE-1))
{
printf (M\n Stack overflow”);
exit(-1);
}
else
{
s->top ++;
s->st[s->top] = element;
}
}
ARRAY

Intermediate Programming 58

Popping an element from the stack

pushed in; stack /)
initially -1 */ }
}
LINKED LIST
ARRAY
Spring 2019 Intermediate Programming 57
void push (stack **top, int element)
{
stack *new;
new = (stack *) malloc(sizeof (stack));
if (new == NULL)
{
printf (“\n Stack is full”);
exit(-1);
}
new->value = element;
new->next = *top;
*top = new;
}
LINKED LIST
Spring 2019 Intermediate Programming 59

Spring 2019

int pop (stack *s)
{
if (s->top == -1)
{
printf (“\n Stack underflow”);
exit(-1);
}
else
{
return (s->st[s->top--1);
}
}
ARRAY

Intermediate Programming 60

15

p =

int pop (stack **top)
{
int t;
stack *p;
if (*top == NULL)
{
printf (“\n Stack is empty”);
exit(-1);
}
else
{
t = (*top)->value;

*top;

*top = (*top)->next;
free (p);
return t;

LINKED LIST

Checking for stack empty

int isempty (stack *s)
{
if (s->top == -1)
return 1;
else
return (0);

int isempty (stack *top)
{
if (top == NULL)
return (1);
else
return (0);

ARRAY

LINKED LIST

Spring 2019 Intermediate Programming 62

Spring 2019 Intermediate Programming 61
int isfull (stack *s) * Not required for linked list
{ implementation.
if (s->top == * Inthe push () function, we
(MAXSIZE-1)) can check the return value of
return 1; malloc ().
else — If -1, then memory cannot be
return (0); allocated.
}
ARRAY LINKED LIST
Spring 2019 Intermediate Programming 63

Example main function :: array

#include <stdio.h>
#define MAXSIZE 100

struct lifo
{
int st[MAXSIZE];
int top;
}i
typedef struct lifo stack;

main ()
{
stack A, B;
create (&A) ; create (&B) ;
push (&A,10) ;
push (&3, 20) ;

push (&3, 30) ;
push (&B,100); push(&B,5);

printf (“%d %d”, pop(&A),
pop (&B)) ;

push (&2, pop(&B));

if (isempty (&B))

printf ("M\n B is empty”);

Spring 2019 Intermediate Programming 64

16

Example main function :: linked list

#include <stdio.h> push (&A, 30) ;
struct lifo push (&B,100) ;
{ push (&B, 5) ;
l:t Vili?; - printf (“%d %d”,
struc O *next;
. e - pop (&A) , Pop (§B)) ;
typedef struct lifo stack; push (&R, pop (&B));
main () if (isempty(B))
{ printf (™\n B is
stack *A, *B; empty”) ;
create(&A); create(&B); }
push (&A,10) ;
push (&A, 20) ;
Spring 2019 Intermediate Programming 65

Queue Implementation using Linked
List

Spring 2019 Intermediate Programming 66

Basic Idea

* Basicidea:
— Create a linked list to which items would be added
to one end and deleted from the other end.
— Two pointers will be maintained:

* One pointing to the beginning of the list (point from
where elements will be deleted).

« Another pointing to the end of the list (point where Rear
new elements will be inserted).

Front DELETION INSERTION

Spring 2019 Intermediate Programming 67

QUEUE: LINKED LIST STRUCTURE

ENQUEUE

v

[rear] h

—IN

Spring 2019 Intermediate Programming 68

17

QUEUE: LINKED LIST STRUCTURE

DEQUEUE

Spring 2019 Intermediate Programming 69

1 S

QUEUE using Linked List

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

struct node{
char name([30];
struct node *next;

¥
typedef struct node _QNODE;
typedef struct {

_QNODE *queue_front, *queue_rear;
} _QUEUE;

Spring 2019 Intermediate Programming

Spring 2019 Intermediate P

Spring 2019 Intermediate Programming

18

Spring 2019

void init_queue(_ QUEUE *q)
{

q->queue_front= q->queue_rear=NULL

}

int isEmpty(_QUEUE *q)

{
if(q==NULL) return 1;
else return 0;

}

Intermediate Programming

9

main()

{

int i,j;

char command|5],val[30];
_QUEUE q;

init_queue(&q);

command|[0]="0";

printf(" For entering a name use 'enter <name>"\n");
printf("For deleting use 'delete' \n"");

printf(" To end the session use 'bye' \n");
while(stremp(command,bye')){
scanf(" %s'" ,command);

Spring 2019 Intermediate Programming 74

Spring 2019

Problem With Array Implementation

ENQUEUE DEQUEUE
Effective queuing storage area of array gets reduced.
0 N
| | ||
|fr{)p,td"t | |re4r4ar |

Use of circular array indexing

Spring 2019 Intermediate Programming 76

19

Queue: Example with Array Implementation
#define MAX_SIZE 100

typedef struct { char name[30];
} _ELEMENT;

typedef struct {
_ELEMENT q_elem[MAX_SIZE];
int rear;
int front;
int full,empty;
} _QUEUE;

Spring 2019 Intermediate Programming

Queue Example: Contd.

void init_queue(_QUEUE *q)
{q->rear= q->front=0;
q->full=0; q->empty=1;

}

int IsFull(QUEUE *q)
{return(q->full);}

int IsEmpty(_QUEUE *q)
{return(q->empty);}

Spring 2019 Intermediate Programming

78

Queue Example: Contd.
void AddQ(_QUEUE *q, ELEMENT ob)
{
if(IsFull(q)) {printf("Queue is Full \n"); return;}

g->rear=(q->rear+1)%(MAX_SIZE);
q->q_elem|[q->rear]=ob;

if(q->front==q->rear) q->full=1; else q->full=0;
g->empty=0;

return;

}

Spring 2019 Intermediate Programming

Queue Example: Contd.
_ELEMENT DeleteQ(_QUEUE *q)

{
_ELEMENT temp;
temp.name[0]="\0";

if(IsEmpty(q)) {printf("" Queue is EMPTY\n");return(temp);}

g->front=(q->front+1)%(MAX_SIZE);
temp=q->q_elem|[q->front];

if(q->rear==q->front) q->empty=1; else q->empty=0;
q->full=0;

return(temp);

Spr}lg 2019 Intermediate Programming

80

20

Queue Example: Contd.

main() #include <stdio.h>
{ #include <stdlib.h>
int i,j; #include <string.h>
char command|5];

_ELEMENT ob;

_QUEUE A;

init_queue(&A);

command[0]="\0";

printf(" For adding a name use 'add [name]"\n");
printf("For deleting use 'delete' \n");
printf("To end the session use 'bye' \n");

Spring 2019 Intermediate Programming

Queue Example: Contd.

while (stremp(command,'bye')!=0){
scanf(" %s" ,command);

if(stremp(command,"add')==0) {
scanf(" %s'",ob.name);

if (IsFull(&A))
printf(""No more insertion please \n'");
else {
AddQ(&A,ob);
printf(""Name inserted %s \n",ob.name);
}
}
Spring 2019 Intermediate Programming 82

Queue Example: Contd.

if (strcmp(command," delete')==0) {
if (IsEmpty(&A))
printf(""Queue is empty \n");
else {
ob=DeleteQ(&A);
printf("Name deleted %s \n'",0b.name);
}
}
} /* End of while */
printf("End session \n"");

}

Spring 2019 Intermediate Programming

21

