
1

Dynamic Memory Management in C++

 Memory allocation in C:

o calloc()

o malloc()

o realloc()

 Deallocated using the free() function.

o Memory allocation in C++

o using the new operator.

o Deallocated using the delete operator.

(The following notes are adapted from https://www.tutorialspoint.com/)

A good understanding of how dynamic memory really works in C++ is

essential to becoming a good C++ programmer. Memory in your C++

program is divided into two parts −

 The stack − All variables declared inside the function will take up memory

from the stack.

 The heap − This is unused memory of the program and can be used to allocate

the memory dynamically when program runs.

Many times, you are not aware in advance how much memory you will

need to store particular information in a defined variable and the size of

required memory can be determined at run time.

You can allocate memory at run time within the heap for the variable of a

given type using a special operator in C++ which returns the address of

the space allocated. This operator is called new operator.

If you are not in need of dynamically allocated memory anymore, you can

use delete operator, which de-allocates memory that was previously

allocated by new operator.

new and delete Operators
There is following generic syntax to use new operator to allocate memory

dynamically for any data-type.

new data-type;

Here, data-type could be any built-in data type including an array or any

user defined data types include class or structure. Let us start with built-

2

in data types. For example we can define a pointer to type double and then

request that the memory be allocated at execution time. We can do this

using the new operator with the following statements −

double* pvalue = NULL; // Pointer initialized with null
pvalue = new double; // Request memory for the variable

The memory may not have been allocated successfully, if the free store

had been used up. So it is good practice to check if new operator is

returning NULL pointer and take appropriate action as below −

double* pvalue = NULL;
if(!(pvalue = new double)) {
 cout << "Error: out of memory." <<endl;
 exit(1);
}

The malloc() function from C, still exists in C++, but it is recommended

to avoid using malloc() function. The main advantage of new over malloc()

is that new doesn't just allocate memory, it constructs objects which is

prime purpose of C++.

At any point, when you feel a variable that has been dynamically allocated

is not anymore required, you can free up the memory that it occupies in

the free store with the ‘delete’ operator as follows −

delete pvalue; // Release memory pointed to by pvalue

Let us put above concepts and form the following example to show how

‘new’ and ‘delete’ work −

#include <iostream>

using namespace std;

int main () {

 double* pvalue = NULL; // Pointer initialized with null

 pvalue = new double; // Request memory for the variable

 *pvalue = 29494.99; // Store value at allocated address

 cout << "Value of pvalue : " << *pvalue << endl;

 delete pvalue; // free up the memory.

3

 return 0;

}

If we compile and run above code, this would produce the following result

−

Value of pvalue : 29495

Dynamic Memory Allocation for Arrays
Consider you want to allocate memory for an array of characters, i.e.,

string of 20 characters. Using the same syntax what we have used above

we can allocate memory dynamically as shown below.

char* pvalue = NULL; // Pointer initialized with null
pvalue = new char[20]; // Request memory for the variable

To remove the array that we have just created the statement would look

like this −

delete [] pvalue; // Delete array pointed to by pvalue

Following the similar generic syntax of new operator, you can allocate for

a multi-dimensional array as follows −

double** pvalue = NULL; // Pointer initialized with null
pvalue = new double [3][4]; // Allocate memory for a 3x4 array

However, the syntax to release the memory for multi-dimensional array

will still remain same as above −

delete [] pvalue; // Delete array pointed to by pvalue

Dynamic Memory Allocation for Objects
Objects are no different from simple data types. For example, consider the

following code where we are going to use an array of objects to clarify the

concept −

 Live Demo

#include <iostream>

using namespace std;

class Box {

 public:

 Box() {

http://tpcg.io/qxQQ36

4

 cout << "Constructor called!" <<endl;

 }

 ~Box() {

 cout << "Destructor called!" <<endl;

 }

};

int main() {

 Box* myBoxArray = new Box[4];

 delete [] myBoxArray; // Delete array

 return 0;

}

If you were to allocate an array of four Box objects, the Simple constructor

would be called four times and similarly while deleting these objects,

destructor will also be called same number of times.

If we compile and run above code, this would produce the following result

−

Constructor called!
Constructor called!
Constructor called!
Constructor called!
Destructor called!
Destructor called!
Destructor called!
Destructor called!

