
1

Polymorphism in C++

(These notes are adapted from https://www.geeksforgeeks.org/polymorphism-in-c/)

Polymorphism in C++
The word polymorphism means having many forms. In simple words, we can define polymorphism as
the ability of a message to be displayed in more than one form.
Real life example of polymorphism, a person at a same time can have different characteristic. Like a
man at a same time is a father, a husband, a employee. So a same person posses have different
behavior in different situations. This is called polymorphism.
Polymorphism is considered as one of the important features of Object Oriented Programming.

In C++ polymorphism is mainly divided into two types:
 Compile time Polymorphism
 Runtime Polymorphism

1. Compile time polymorphism: This type of polymorphism is achieved by function

overloading or operator overloading.

 Function Overloading: When there are multiple functions with same name but
different parameters then these functions are said to be overloaded. Functions
can be overloaded by change in number of arguments or/and change in
type of arguments.
Rules of Function Overloading
// C++ program for function overloading

#include <bits/stdc++.h>
using namespace std;
class Geeks
{
 public:

 // function with 1 int parameter
 void func(int x)
 {
 cout << "value of x is " << x << endl;
 }

 // function with same name but 1 double parameter
 void func(double x)
 {
 cout << "value of x is " << x << endl;
 }

 // function with same name and 2 int parameters
 void func(int x, int y)
 {
 cout << "value of x and y is " << x << ", " << y << endl;
 }
};

int main() {

 Geeks obj1;

 // Which function is called will depend on the parameters passed
 // The first 'func' is called
 obj1.func(7);

 // The second 'func' is called
 obj1.func(9.132);

https://www.geeksforgeeks.org/function-overloading-in-c/

2

 // The third 'func' is called
 obj1.func(85,64);
 return 0;
}

 Run on IDE
 Output:

 value of x is 7

 value of x is 9.132

 value of x and y is 85, 64

 In the above example, a single function named func acts differently in three
different situations which is the property of polymorphism.

 Operator Overloading: C++ also provide option to overload operators. For
example, we can make the operator (‘+’) for string class to concatenate two
strings. We know that this is the addition operator whose task is to add to
operands. So a single operator ‘+’ when placed between integer operands ,
adds them and when placed between string operands, concatenates them.
Example:

// CPP program to illustrate
// Operator Overloading
#include<iostream>
using namespace std;

class Complex {
private:
 int real, imag;
public:
 Complex(int r = 0, int i =0) {real = r; imag = i;}

 // This is automatically called when '+' is used with
 // between two Complex objects
 Complex operator + (Complex const &obj) {
 Complex res;
 res.real = real + obj.real;
 res.imag = imag + obj.imag;
 return res;
 }
 void print() { cout << real << " + i" << imag << endl; }
};

int main()
{
 Complex c1(10, 5), c2(2, 4);
 Complex c3 = c1 + c2; // An example call to "operator+"
 c3.print();
}
Run on IDE
Output:

12 + i9

In the above example the operator ‘+’ is overloaded. The operator ‘+’ is an
addition operator and can add two numbers(integers or floating point) but here

https://www.geeksforgeeks.org/operator-overloading-c/

3

the operator is made to perform addition of two imaginary or complex numbers.
To learn operator overloading in details visit this link.

2. Runtime polymorphism: This type of polymorphism is achieved by Function Overriding.

 Function overriding on the other hand occurs when a derived class has a
definition for one of the member functions of the base class. That base function
is said to be overridden.
// C++ program for function overriding

#include <bits/stdc++.h>
using namespace std;

// Base class
class Parent
{
 public:
 void print()
 {
 cout << "The Parent print function was called" << endl;
 }
};

// Derived class
class Child : public Parent
{
 public:

 // definition of a member function already present in Parent
 void print()
 {
 cout << "The child print function was called" << endl;
 }

};

//main function
int main()
{
 //object of parent class
 Parent obj1;

 //object of child class
 Child obj2 = Child();

 // obj1 will call the print function in Parent
 obj1.print();

 // obj2 will override the print function in Parent
 // and call the print function in Child
 obj2.print();
 return 0;
}

 Run on IDE
 Output:

 The Parent print function was called

 The child print function was called

https://www.geeksforgeeks.org/operator-overloading-c/
https://www.geeksforgeeks.org/virtual-functions-and-runtime-polymorphism-in-c-set-1-introduction/

