
Inheritance and Overloading

Week 11

1

Inheritance

• Objects are often defined in terms of hierarchical classes with a base
class and one or more levels of classes that inherit from the classes
that are above it in the hierarchy.

• For instance, graphics objects might be defined as follows:

Inheritance (continued)

• This hierarchy could, of course, be continued for more levels.

• Each level inherits the attributes of the above level. Shape is the base
class. 2-D and 3-D are derived from Shape and Circle, Square, and
Triangle are derived from 2-D. Similarly, Sphere, Cube, and Tetrahedron
are derived from 3-D.

Inheritance (continued)

class A : base class access specifier B

{

member access specifier(s):

...

member data and member function(s);

...

}

Valid access specifiers include public, private, and protected

Public Inheritance

public base class (B)

public members

protected members

private members

derived class (A)

public

protected

inherited but not

accessible

class A : public B

{ // Class A now inherits the members of Class B

// with no change in the “access specifier” for

} // the inherited members

Protected Inheritance

protected base class (B)

public members

protected members

private members

derived class (A)

protected

protected

inherited but not

accessible

class A : protected B

{ // Class A now inherits the members of Class B

// with public members “promoted” to protected

} // but no other changes to the inherited members

Private Inheritance

private base class (B)

public members

protected members

private members

derived class (A)

private

private

inherited but not

accessible

class A : private B

{ // Class A now inherits the members of Class B

// with public and protected members

} // “promoted” to private

Inheritance (continued)
class Shape

{

public:

int GetColor () ;

protected: // so derived classes can access it

int color;

};

class Two_D : public Shape

{

// put members specific to 2D shapes here

};

class Three_D : public Shape

{

// put members specific to 3D shapes here

};

Inheritance (continued)

class Square : public Two_D
{

public:
float getArea () ;

protected:
float edge_length;

} ;
class Cube : public Three_D
{

public:
float getVolume () ;

protected:
float edge_length;

} ;

Inheritance (continued)

int main ()

{

Square mySquare;

Cube myCube;

mySquare.getColor (); // Square inherits getColor()

mySquare.getArea ();

myCube.getColor (); // Cube inherits getColor()

myCube.getVolume ();

}

Function Overloading

• C++ supports writing more than one function with the same name
but different argument lists. This could include:

• different data types

• different number of arguments

• The advantage is that the same apparent function can be called to
perform similar but different tasks. The following will show an
example of this.

Function Overloading
void swap (int *a, int *b) ;

void swap (float *c, float *d) ;

void swap (char *p, char *q) ;

int main ()

{

int a = 4, b = 6 ;

float c = 16.7, d = -7.89 ;

char p = 'M' , q = 'n' ;

swap (&a, &b) ;

swap (&c, &d) ;

swap (&p, &q) ;

}

Function Overloading

void swap (int *a, int *b)

{ int temp; temp = *a; *a = *b; *b = temp; }

void swap (float *c, float *d)

{ float temp; temp = *c; *c = *d; *d = temp; }

void swap (char *p, char *q)

{ char temp; temp = *p; *p = *q; *q = temp; }

Function Templates

• We have discussed overloaded functions as a way to perform similar
operations on data of different types. The swap functions were an
example.

• We wrote three functions with the same name but different data
types to perform the swap operations. Then we could call swap (&a,
&b), for example, and C++ would select which function to use by
matching the data type of a and b to one of the functions.

Function Templates

• Another way to perform this task would be to create a function

template definition.

• With a function template defined, when we call swap (&a, &b), C++

will generate the object code functions for us. The program on the

following slides is an example.

Function Templates

template <typename T> void swap (T *a, T *b)

{

T temp;

temp = *a;

*a = *b;

*b = temp;

}

T is a “dummy” type that will be

filled in by the compiler as

needed

a and b are of “type” T

temp is of “type” T

swap is a function template,

NOT a function

Function Templates
int main ()

{

int a = 5, b = 6;

float c = 7.6, d = 9.8;

char e = 'M', f = 'Z';

swap (&a, &b); // compiler puts int in for T

swap (&c, &d); // compiler puts float in for T

swap (&e, &f); // compiler puts char in for T

cout << "a=" << a << " and b=" << b << endl;

cout << "c=" << c << " and d=" << d << endl;

cout << "e=" << e << " and f=” << f << endl;

}

