
1

Week10

C++ Classes 
&

Object Oriented Programming

1

Object Oriented Programming

• Programmer thinks about and defines the attributes and behavior of 
objects.

• Often the objects are modeled after real-world entities.

• Very different approach than function-based programming (like C).

2

Object Oriented Programming

• Object-oriented programming (OOP) 
• Encapsulates data (attributes) and functions (behavior) into packages called 

classes.

• So, Classes are user-defined (programmer-defined) types.
• Data (data members) 
• Functions (member functions or methods)

• In other words, they are structures + functions

3

Classes in C++

• A class definition begins with the keyword class.
• The body of the class is contained within a set of braces, {    } ; (notice 

the semi-colon).

class class_name
{

….
….
….
};

Class body  (data member 
+ methods)

Any valid 
identifier

4



2

Classes in C++

• Within the body, the keywords private: and public: specify the access 
level of the members of the class.

• the default is private.

• Usually, the data members of a class are declared in the private:
section of the class and the member functions are in public: section.

5

Classes in C++

class class_name
{

private:
…
…
…

public:
…
…
…

};

Public members or methods

private members or 
methods

6

Classes in C++

• Member access specifiers
• public: 

• can be accessed outside the class directly.
• The public stuff is the interface.

• private:
• Accessible only to member functions of class
• Private members and methods are for internal use only.

7

Class Example

• This class example shows how we can encapsulate (gather) a circle 
information into one package (unit or class) 

class Circle
{

private:
double radius;

public:
void setRadius(double r);
double getDiameter();
double getArea();
double getCircumference();

};

No need for others classes to 
access and retrieve its value 
directly. The
class methods are responsible for
that only.

They are accessible from outside
the class, and they can access the
member (radius)

8



3

Creating an object of a Class

• Declaring a variable of a class type creates an object. You can have 
many variables of the same type (class).

• Instantiation

• Once an object of a certain class is instantiated, a new memory 
location is created for it to store its data members and code

• You can instantiate many objects from a class type.
• Ex) Circle c; Circle *c;  

9

Special Member Functions

• Constructor:
• Public function member
• called when a new object is created (instantiated).
• Initialize data members.
• Same name as class
• No return type
• Several constructors

• Function overloading

10

Special Member Functions

class Circle
{

private:
double radius;

public:
Circle();
Circle(int r);
void setRadius(double r);

double getDiameter();
double getArea();
double getCircumference();

};

Constructor with no 
argument

Constructor with one 
argument

11

Implementing class methods

• Class implementation: writing the code of class methods.
• There are two ways:

1. Member functions defined outside class
• Using Binary scope resolution operator (::)
• “Ties” member name to class name
• Uniquely identify functions of particular class
• Different classes can have member functions with same name

• Format for defining member functions
ReturnType ClassName::MemberFunctionName( ){

…
}

12



4

Implementing class methods

2. Member functions defined inside class
• Do not need scope resolution operator, class name;

class Circle
{

private:
double radius;

public:
Circle() { radius = 0.0;}
Circle(int r);
void setRadius(double r){radius = r;}
double getDiameter(){ return radius *2;}
double getArea();
double getCircumference();

};

Defined 
inside 
class

13

class Circle
{

private:
double radius;

public:
Circle() { radius = 0.0;}
Circle(int r);
void setRadius(double r){radius = r;}
double getDiameter(){ return radius *2;}
double getArea();
double getCircumference();

};
Circle::Circle(int r)
{

radius = r;
}
double Circle::getArea()
{ 

return radius * radius * (22.0/7);
}
double Circle:: getCircumference()
{

return 2 * radius  * (22.0/7);
}

Defined outside class

14

Accessing Class Members

• Operators to access class members
• Identical to those for structs
• Dot member selection operator (.)

• Object
• Reference to object

• Arrow member selection operator (->) 
• Pointers

15

class Circle
{

private:
double radius;

public:
Circle() { radius = 0.0;}
Circle(int r);
void setRadius(double r){radius = r;}
double getDiameter(){ return radius *2;}
double getArea();
double getCircumference();

};
Circle::Circle(int r)
{

radius = r;
}
double Circle::getArea()
{ 

return radius * radius * (22.0/7);
}
double Circle:: getCircumference()
{

return 2 * radius  * (22.0/7);
}

void main()
{

Circle c1,c2(7);

cout<<“The area of c1:”
<<c1.getArea()<<“\n”;

//c1.radius = 5;//syntax error
c1.setRadius(5);

cout<<“The circumference of c1:”
<< c1.getCircumference()<<“\n”;

cout<<“The Diameter of c2:”
<<c2.getDiameter()<<“\n”;

}

The first 
constructor is 

called

The second 
constructor is 

called

Since radius is a 
private class data 

member

16



5

class Circle
{

private:
double radius;

public:
Circle() { radius = 0.0;}
Circle(int r);
void setRadius(double r){radius = r;}
double getDiameter(){ return radius *2;}
double getArea();
double getCircumference();

};
Circle::Circle(int r)
{

radius = r;
}
double Circle::getArea()
{ 

return radius * radius * (22.0/7);
}
double Circle:: getCircumference()
{

return 2 * radius  * (22.0/7);
}

void main()
{

Circle c(7);
Circle *cp1 = &c;
Circle *cp2 = new Circle(7);

cout<<“The are of cp2:”
<<cp2->getArea();

}

17

Destructors

• Destructors
• Special member function
• Same name as class 

• Preceded with tilde (~)
• No arguments 
• No return value
• Cannot be overloaded
• Before system reclaims object’s memory

• Reuse memory for new objects
• Mainly used to de-allocate dynamic memory locations

18

Another class Example

• This class shows how to handle time parts.
class Time
{

private:
int *hour,*minute,*second;

public:
Time();
Time(int h,int m,int s);
void printTime();
void setTime(int h,int m,int s);
int getHour(){return *hour;}
int getMinute(){return *minute;}
int getSecond(){return *second;}
void setHour(int h){*hour = h;}
void setMinute(int m){*minute = m;}
void setSecond(int s){*second = s;}
~Time();

};

Destructor

19

Time::Time()
}

hour = new int;
minute = new int;
second = new int;
*hour = *minute = *second = 0;

{

Time::Time(int h,int m,int s)
}

hour = new int;
minute = new int;
second = new int;
*hour = h;
*minute = m;
*second = s;

{

void Time::setTime(int h,int m,int s)
}

*hour = h;
*minute = m;
*second = s;

{

Dynamic locations  
should be allocated 

to pointers first

20



6

void Time::printTime()
}
      cout<<"The time is : ("<<*hour<<":"<<*minute<<":"<<*second<<")"

>>endl;
{

Time::~Time()
}

delete hour; delete minute;delete second;
{

void main()
}

Time *t;
t= new Time(3,55,54);
t->printTime();

t->setHour(7);
t->setMinute(17);
t->setSecond(43);

t->printTime();

delete t;
{

Destructor: used here to de-
allocate memory locations

When executed, the 
destructor is called

Output:
The time is : (3:55:54)
The time is : (7:17:43)
Press any key to continue

21

Reasons for OOP

1. Simplify programming
2. Interfaces

• Information hiding:
• Implementation details hidden within classes themselves

3. Software reuse
• Class objects included as members of other classes

22


