	5 3 8 9 1 7 0 2 6 4		
	Draw this array after the FIRST iteration of the (sorting from smallest to largest).	large loop in	n a selection sort
2.	Here is an array of ten integers:		
	5 3 8 9 1 7 0 2 6 4		
	Draw this array after the FIRST iteration of the (sorting from smallest to largest). This iteration in the array!		
3.	Suppose that you are writing a program that has method available:	s this selection	onsort static
	Describe a case where quicksort will result in quadratic behavior. Here is an array which has just been partitioned by the first step of quicksort:		
	3, 0, 2, 4, 5, 8, 7, 6, 9		
	Which of these elements could be the pivot? (T possibility!)	here may be	more than one
6.	Here is an array of ten integers:		
	5 3 8 9 1 7 0 2 6 4		
	Suppose we partition this array using quicksort 5 for the pivot. Draw the resulting array after the	-	•
7.	Fill in the following table for the times to sort an array of n items. Use only big-O notation, and do not have any extraneous constants in your expressions.		
	8.	Worst Case	Average Case
	Binary search of a sorted array		
	Insertion sort		
	Merge sort		
	Quick sort without "median of three" pivot selection		
	Quick sort with "median of three" pivot selection		

1. Here is an array of ten integers:

Selection sort . . .

Multiple Choice

1.	In a selectionsort of n elements, how many times is the swap function called
	in the complete execution of the algorithm?

- o A. 1
- o B. n 1
- o C. n log n
- \circ D. n^2
- 2. Selectionsort and quicksort both fall into the same category of sorting algorithms. What is this category?
 - o A. O(n log n) sorts
 - o B. Divide-and-conquer sorts
 - o C. Interchange sorts
 - o D. Average time is quadratic.
- 3. Suppose that a selectionsort of 100 items has completed 42 iterations of the main loop. How many items are now guaranteed to be in their final spot (never to be moved again)?
 - o A. 21
 - o B. 41
 - o C. 42
 - o D. 43
- 4. Suppose we are sorting an array of ten integers using a some quadratic sorting algorithm. After four iterations of the algorithm's main loop, the array elements are ordered as shown here:
- **5.** 1 2 3 4 5 0 6 7 8 9

Which statement is correct? (Note: Our selectionsort picks largest items first.)

- o A. The algorithm might be either selectionsort or insertionsort.
- B. The algorithm might be selectionsort, but could not be insertionsort.
- C. The algorithm might be insertionsort, but could not be selectionsort.
- o D. The algorithm is neither selectionsort nor insertionsort.
- 6. Suppose we are sorting an array of eight integers using a some quadratic sorting algorithm. After four iterations of the algorithm's main loop, the array elements are ordered as shown here:

2 4 5 7 8 1 3 6

Which statement is correct? (Note: Our selectionsort picks largest items first.)

- o A. The algorithm might be either selectionsort or insertionsort.
- o B. The algorithm might be selectionsort, but it is not insertionsort.
- o C. The algorithm is not selectionsort, but it might be insertionsort.
- o D. The algorithm is neither selectionsort nor insertionsort.
- 7. When is insertionsort a good choice for sorting an array?
 - o A. Each component of the array requires a large amount of memory.
 - o B. Each component of the array requires a small amount of memory.
 - o C. The array has only a few items out of place.
 - o D. The processor speed is fast.
- 8. What is the worst-case time for mergesort to sort an array of n elements?
 - \circ A. O(log n)
 - \circ B. O(n)
 - \circ C. O(n log n)
 - \circ D. O(n^2)
- 9. What is the worst-case time for quicksort to sort an array of n elements?
 - \circ A. O(log n)
 - \circ B. O(n)
 - \circ C. O(n log n)
 - \circ D. O(n^2)
- 10. Mergesort makes two recursive calls. Which statement is true after these recursive calls finish, but before the merge step?
 - o A. The array elements form a heap.
 - o B. Elements in each half of the array are sorted amongst themselves.
 - C. Elements in the first half of the array are less than or equal to elements in the second half of the array.
 - o D. None of the above.
- 11. Suppose we are sorting an array of eight integers using quicksort, and we have just finished the first partitioning with the array looking like this:

```
2 5 1 7 9 12 11 10
```

Which statement is correct?

- o A. The pivot could be either the 7 or the 9.
- o B. The pivot could be the 7, but it is not the 9.
- o C. The pivot is not the 7, but it could be the 9.
- o D. Neither the 7 nor the 9 is the pivot.