1. Time Complexity: For each question, write down the best asymptotic (big-O) characterization of the following functions:

a.
$$f(n) = 10^7 n^{0.6} + \frac{n^3}{\log(n^5)} + n\log(n^4) + 0.1n^3$$

b. Let $f(n) = 10n^3$ and $g(n) = 5n^3 + 21n$
i. $f(n) + g(n)$
ii. $f(n) - g(n)$
iii. $f(n) \cdot g(n)$
iv. $\frac{g(n)}{f(n)}$
v. $f^2(n)$
SOLUTION:
1a) $O(n^3)$
1b)
1. $f(n) + g(n) = 15n^3 + 21n => O(n^3)$
II. $f(n) - g(n) = 5n^3 - 21n => O(n^3)$
III. $f(n) \cdot g(n) = 50n^6 + 210n^4 => O(n^6)$
IV. $\frac{g(n)}{f(n)} = \frac{(5n^3 + 21n)}{10n^3} => \frac{1}{2} + \frac{2.1}{n^2} => O(1)$
V. $f^2(n) = 100n^6 => O(n^6)$

2. Search Algorithms: Sequential (Linear) Search and Binary Search

- **a.** What is the main difference between these two search algorithms in terms of input list type?
- **b.** What are the best and worst case time complexities of each algorithm? And, when does the best case occur in binary search algorithm?
- **c.** Imagine that you run Sequential Search algorithm on the input list "13, 5, 148, -230, 645, 135, 1099, 1980, 127, 16". In which step you find the number 1980?
- **d.** Imagine that you run Binary Search algorithm on the input list "-123, 17, 66, 97, 123, 125, 1071, 1453". In which step you find the number 1071? Please show the each step.

SOLUTION:

- a. Sorted List => Binary Search,
 - Input list does not have to be sorted for sequential search
- b. Sequential Search
 - i. BEST CASE: Searched item is the first element (O(1))
 - ii. WORST CASE: Searched item is the last element (O(N)) Binary search:
 - i. BEST CASE: Searched item is the medium element (O(1))
 - ii. WORST CASE: Searched item is the first or last element (O(logn))
 - c. ???
 - d. ????

3. Programming Skills

What do you expect at the output when you	In terms of n, what is the highest and lowest
execute the following C code?	values of count that may be printed at the last
	line?
void main() {	<pre>void myFunc(int n) {</pre>
int i, a[10] = { 10, 55, 9, 423,	<pre>int i, count=0;</pre>
2345, 20, 30, 40, -22, 34 };	<pre>for(i=1;i<=n;i++) {</pre>
<pre>for(i=8;i>0;i)</pre>	r=1+rand()%n;
printf("%d\n",a[i]);	if (i%r >4)
<pre>system ("pause");</pre>	count++
<pre>return 0;</pre>	}
}	<pre>printf("count=%d",count);</pre>
	}