
1/5

CEN235 – DATA STRUCTURES

Fall – 2018

Lab 8: Implement Dictionary Using Binary Search Tree

Preliminary Work:

 Dictionary can be implemented using binary search tree. A binary search tree is a

binary tree such that each node stores a key of a dictionary.

 Key 'k' of a node is always greater than the keys present in its left sub tree.

 Similarly, key 'k' of a node is always lesser than the keys present in its right sub tree.

Example:
 well

 / \

 boot xmas

 / \ \

 air bus zebra

In the above example, keys present at the left sub-tree of the root node are lesser than the key

of the root node. And also, the keys present at the right sub-tree are greater than the key of

the root node.

 To insert an element in a binary search tree, check whether the root is present or not. If

root is absent, then the new node is the root.

 If root node is present, check whether the key in new node is greater than or lesser than

the key in root node.

 If key in new node is less than the key in root, then traverse the left sub-tree recursively

until we reach the leaf node. Then, insert the new node to the left(newnode <

leaf)/right(newnode > leaf) of the leaf.

 If the key in new node is greater than the key in root, then traverse the right sub-

tree recursively until we reach the leaf node. Then, insert the new node to the

left(newnode < leaf)/right of the leaf

InsertionInBST(T, newnode)

y<-NULL

x <- root[T]

while x != NULL

 y<-x

 if key[z] < key

 then x <- left[x]

 else x <- right[x]

parent[newnode] <- y

if y == NULL

 then root[T] <- newnode

else if key[newnode] < key[y]

2/5

 then left[y] <- newnode

 else right[y] <- newnode

Insert "yell" to the below binary search tree.

 workload

 / \

 boot xmas

 / \ \

 air bus zebra

 workload

 / \

 boot xmas

 / \ / \

 air bus yell zebra

To delete a node from binary search tree, we have three different cases.

Node X has no children

Node X has one child

Node X has two children

Case 1:

If X has no children

 workload

 / \

 boot xmas

 / \ / \

 air bus yell zebra

Delete "zebra" from above binary search tree.

 workload

 / \

 boot xmas

 / \ /

 air bus yell

Case 2:

If X has only one child, then delete x and point the parent of x to the child of x.

 workload

 / \

 boot xmas

 / \ /

 air bus yell

3/5

Delete "xmas" from the above binary search tree.

 workload

 / \

 boot yell

 / \

 air bus

Case 3:

If X has two children, then find its successor 'S'. Remove 'S' from the binary search

tree. And replace X with 'S'

 workload

 / \

 boot xmas

 / \ / \

 air bus yell zebra

Remove "workload" from the above binary search tree. The successor for

"workload"(smallest element in the right subtree of "workload") is "yell". Remove it and

replace "workload with "yell".

 yell

 / \

 boot xmas

 / \ \

 air bus zebra

4/5

Tasks:

Run the BST code to insert items to the dictionary, delete items from the dictionary, and search

any item in the tree, and print the tree using inorder traversal function provided.

Task-1: Print the tree so that you can see the tree like examples given above. Here, you can

use simple front slash character (/) to show relationship of tree nodes. Here, maybe you can use

preorder or postorder tree traversal algorithms. [20pts]

Inorder Traversal (Given

in the code)

Algorithm Inorder(tree)

 1. Traverse the left subtree, i.e., call Inorder(left-subtree)

 2. Visit the root.

 3. Traverse the right subtree, i.e., call Inorder(right-subtree)
Preorder Traversal Algorithm Preorder(tree)

 1. Visit the root.

 2. Traverse the left subtree, i.e., call Preorder(left-subtree)

 3. Traverse the right subtree, i.e., call Preorder(right-subtree)
Postorder Traversal Algorithm Postorder(tree)

 1. Traverse the left subtree, i.e., call Postorder(left-subtree)

 2. Traverse the right subtree, i.e., call Postorder(right-subtree)

 3. Visit the root.

Task-2: Implement the following functions [30pts]:

 Add a new function to the given program so that you can count the number words in

your binary search tree (i.e. dictionary) [10pts]

 Compute depth of your tree [10pts]

 Mirror function [10pts]

Change your BST tree so that the roles of the left and right pointers are swapped at

every node. So the tree...

 4

 / \

 2 5

 / \

 1 3

 is changed to...

 4

 / \

 5 2

 / \

 3 1

BST.c

5/5

Task-3: Create a file, copy some of random English paragraphs from Internet and paste them

into your file, so that you have a random text file [50pts].

Parse this file word by word and each new word to your dictionary. Count the number of

distinct words in your dictionary (i.e., the number of nodes in the dictionary). What is the depth

of your tree now? Take the mirror of your dictionary and print it on the screen.

